Эпоксидирование некоторых полициклических мостиковых олефинов в присутствии модифицированного полиоксомолибденового соединения | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 6 апреля, печатный экземпляр отправим 10 апреля.

Опубликовать статью в журнале

Автор:

Рубрика: Химия

Опубликовано в Молодой учёный №40 (382) октябрь 2021 г.

Дата публикации: 30.09.2021

Статья просмотрена: 17 раз

Библиографическое описание:

Алескерова, Мехрибан Бахтияр. Эпоксидирование некоторых полициклических мостиковых олефинов в присутствии модифицированного полиоксомолибденового соединения / Мехрибан Бахтияр Алескерова. — Текст : непосредственный // Молодой ученый. — 2021. — № 40 (382). — С. 1-5. — URL: https://moluch.ru/archive/382/84271/ (дата обращения: 28.03.2024).



Изучено эпоксидирование полициклических мостиковых олефинов, синтезированных на основе С 5 7 циклических непредельных углеводородов и их некоторых производных гидропиритом (аддуктом Н 2 О 2 и СО(NH 2 ) 2 ) в присутствии фосфорномолибденового гетерополисоединения, модифицированного СоСО 3 и HBr. Установлено, что эпоксидирование этих углеводородов без изменения их структуры селективно протекает при 60–75°С, мольном соотношении субстрат: Н 2 О 2 и СH 3 СООН 1:2:0,3, продолжительности опыта 4–5 ч, рН среды 3,0–3,5 в растворе ксилола. При более жестких условиях (Т=80–85°С, τ=6–7 г, рН-1,8–2,0, мольное соотношение субстрат: СH 3 СООН=1:2–3), основными продуктами реакции являются гликолы или их моноацетаты. При гидролизе (ацетолизе) эпоксипроизводных норборнено наблюдается перераспределение гидроксилыних (или ацетоксипроизводных) групп в соответствии с правилом Вагнера-Меервейна.

Ключевые слова: полициклические непредельные углеводороды, эпоксидирование, гидропирит, модифицированный бромидом кобальта фосфорплиоксомолибдат.

К настоящему времени накоплен достаточно широкой материал по эпоксидированию алифатических и алкенилароматических углеводородов. Однако сведения об эпоксидах с макро- и полициклическими фрагментами весьма ограничены. Хотя известно, что соединения этого класса обладают рядом уникальных свойств и могут быть использованы в качестве синтонов для получения душистых веществ и лекарственных препаратов [1, 2], мономеров и стабилизаторов [3], биологически активных соединений [4, 5].

Рост объемов пиролизного производства низкомолекулярных непредельных углеводородов делает актуальной проблему комплексного использования таких продуктов процесса как циклопентадиен и его метилпроизводные. Особенности продуктов димеризации и тримеризации этих углеводородов обусловленные их полициклической структурой и наличием двойных связей, позволяют осуществлять синтез их функциональных производных с различными полезными свойствами.

В настоящей работы приведены результаты по эпоксидированию С 10 12 три- и тетрациклических непредельных углеводородов и их некоторых производных гидропиритом (аддуктом пероксида водорода и карбамида) с участием кобальтомолибденового гетерополисоединения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходные непредельные углеводороды С 10 12 мостиковой структуры синтезированы по реакции [4+2]-циклоприсоединения циклопентадиена, циклогекса-1,3-диена, норборнена, винилциклогексана и стирола с участием HNa-клиноптилолита (SiO 2 /Al 2 O 3 =5,4) или HNa-морденита (SiO 2 /Al 2 O 3 =10) при температура 180–200°С и продолжительности 2–3 ч.

В качестве эпоксидирующего агента использовали клатратный комплекс пероксида водорода и карбамида (гидропирит, количество активного кислорода 30–50 %).

Катализатором эпоксидирования являлась фосфорполиоксомолибденовая кислота, модифицированная CoBr 2 и HBr, приготовленная по методу [6].

Реакцию окисления проводили в стеклянном термостатированном реакторе стационарного типа, снабженном капельной воронкой, термометром, магнитной или механической мешалкой, пробоотборником и обратным холодильником. В реактор помещали 0,05 моль полициклического непредельного соединения, 0,03 моль уксусную или муравьиную кислоту, 20–50 мг катализатора 20 мл толуола (или ксилола) в качестве растворителя и 0,05–0,1 моль гидропирита. Реакцию проворили при 40–70 °С и атмосферном давлении в течение 4–7 часов. По ходу реакции через определенные промежутки времени отбирали пробы реакционной смеси для анализа. Содержание активного кислорода определяли перманганатометрическим методом [7]. Состав и структура исходных соединений и продуктов реакции определяли ГЖХ, ИК- и масс-спектроскопическими методами и определением числа эпоксидных групп. Значение эпоксидного числа для синтезированных оксиранов составляет 8,2–8,5. В спектрах ЯМР 1 Н данных соединений имеется двойной дублет протонов оксиранового фрагмента (2,87 м.д.).

Окончание реакции определяли методом ГЖХ и определением эпоксидного числа в органической фазе. Реакционную смесь обрабатывали насыщенным раствором NaHCO 3 , органический слой отделяли, водный слой экстрагировали MgSO 4, растворитель отгоняли атмосферной разгонкой, остаток разделяли под вакуумом.

Эндо-3-окса-экзо-6-фенилтрицикло [3.2.1.0 2.4 ] октан-Т пл -63–65 °С. ИК-спектр, ν, см -1 : 3040 (ν s , CH оксирана), 2890 (СН, ν), 2855 (СН 2 , ν s ), 1660 (С 6 Н 5 , ν), 1430 (СН 2 , δ а s ), 1265 ( , ν s ), 845 ( , ν as ), 975, 910, 778–685 (С 6 Н 5 , δ). Спектр ЯМР 1 Н, δ, м.д.: 1,58 м (1Н, Н 7 В ), 1,83 м (1Н, Н 7 А ), 1,91 м (1Н, Н 8 В ), 2,15 м (2Н, Н 5 , Н 8 А ), 2,30 м (1Н, Н 1 ), 2,88 м (2Н, Н 2 , Н 4 , J n .2 7.2 г ц ), 7,28–7,39 м (5Н, Аr). Спектр ЯМР 13 С, δ, м.д.: фрагмент норборнена-67,2 (С 4 ), 54,0 (С 2 ), 43,0 (С 6 ), 39,8 (С 7 ), 39,4 (С 5 ), 37,0 (С 1 ), 23,8 (С 8 ), в С 6 Н 5– 146,5 (С 1 ), 128,6 (С 3 и С 5 ), 126,7 (С 2 и С 6 ); 126,0 (С 4 ).

Эндо-3-окса-экзо-6-циклогексилтрицикло [3.2.1.0 2.4 ] октан-Т кип -94–95 °С (0,2 кПа), d 20 4 1.0683, d 20 4 1.4926. ИК-спектр, ν, см -1 : 3050 (HC-оксирана, ν s ), 2890 (СН, ν), 2850 (СН 2 , ν s ), 1440 (СН 2 , δ а s ), 1345 (CH, δ), 1260 ( , ν s ), 990, 903, 870, 850 ( , ν а s ). Спектр ЯМР 1 H, δ, м.д.: фрагменте трициклооктана- 1,23–1,78 м (6Н, Н 1 , Н 5 , Н 6 , Н 7 А,В , Н 8 В ), 1,91–2,90 м (3Н, Н 2 , Н 8 А ), в фрагменте циклогексила-1,29 м (2Н, Н 2 В , Н 6 В ), 1,44 (1Н, Н 1 ), 1,46 м (2Н, Н 3 В , Н 5 В ), 1,48 (1Н, Н 4 В ), 1,51 (1Н, Н 4 А ), 1,56 м (4Н, Н 2 А , Н 3 А , Н 5 А , Н 6 А ). Спектр ЯМР 13 С, δ, м.д.: в фрагменте трициклооктана- 53,9 (С 2 ), 53,4 (С 4 ), 43,0 (С 6 ), 37,8 (С 1 ), 32,0 (С 5 ), 26,0 (С 7 ), 24,5 (С 8 ): в фрагменте циклогексила — 40,8 (С 1 ), 33,2 (С 2 , С 6 ), 26,3 (С 3, С 5 ), 26,1 (С 4 ).

Эндо-4-окса-экзо-экзотетрацикло [6.2.1.0 3.5 . 0 2.7 ] ундекан-Т кип -44–45 °С (0,24 кПа), d 20 4 1.0235, n 20 4 1.4876. ИК-спектр, ν, см -1 : 3040 (HC-оксирана, ν s оксирана), 2890 (СН, ν), 2860 (СН 2 , ν s ), 1458 (СН 2 , δ а s ), 1340 (CH, δ), 1260 ( , ν s ), 975, 910, 860, 845 ( , ν а s ). Спектр ЯМР 1 H, δ, м.д.: 1,36–1,76 м (10Н, Н 1 , Н 2 , Н 6 А,В , Н 7 , Н 8 , Н 9 А,В , Н 10 А,В ,), 1,91–2,57 м (4Н, Н 3 , Н 5 , Н 11 А,В ). Спектр ЯМР 13 С, δ, м.д.: в 61,9 (С 5 ), 53,4 (С 3 ), 52,2 (С 2 ), 37,6 (С 8 ), 36,7 (С 1 ), 34,8 (С 11 ), 34,0 (С 6 ), 32,6 (С 7 ), 28,9 (С 9 ), 28,7 (С 10 ). Масс спектр, м/z (отн. Интене, %): 150 [М] (3,8), 132 [С 10 Н 12 ] (6,6), 120 [С 9 Н 12 ] (4,4), 119 [С 9 Н 11 ] + (4,3), 118 [С 9 Н 10 ] (6,0), 116 [С 9 Н 8 ] (6,6), 92 [С 7 Н 8 ] (10,7), 97 [С 7 Н 7 ] + (4,5), 81 [С 6 Н 9 ] + (51,8), 80 [С 6 Н 8 ] (100), 78 [С 6 Н 6 ] (9,1), 68 [С 5 Н 8 ] (14,0), 66 [С 5 Н 6 ] (29,4).

Эндо-4-окса-экзо-тетрацикло [6.2.1. 0 3.5 . 0 2.7 ] додекан-Т кип -75–77 °С (0,66 кПа), d 20 4 1.0426, n 20 4 1.4906. ИК-спектр, ν, см -1 : 3035 (СН, ν s оксирана), 2892 (СН, ν), 2855 (СН 2 , ν s ), 1450 (СН 2 , δ а s ), 1350 (СН, δ), 1245 (

, ν s ), 985, 910, 870, 845 ( , ν а s ). Спектр ЯМР 1 Н, δ, м.д.: 1,29–1,56 (12Н, Н 1 , Н 6 В , Н 7 , Н 8 , Н (9–12) А,В ), 1,67–2,73 м (4Н, Н 2 , Н 3 , Н 5 , Н 6 А ). Спектр ЯМР 13 С, δ, м.д.: 62,3 (С 5 ), 53,8 (С 3 ), 52,9 (С 2 ), 34,3 (С 7 ), 32,6 (С 6 ), 31,0 (С 8 ), 24,4 (С 9–12 ), 24,0 (С 1 ).

5-оксапентацикло [7.2.1. 1 3.7 . 0 2.8 .0 4.6 ] тридекан-Т кип -70–73 °С (0,27 кПа), Т пл -62–64 °С. ИК-спектр, ν, см -1 : 3030 (CH, ν s оксирана), 2890 (СН, ν), 2855 (СН 2 , ν s ), 1460 (СН 2 , δ а s ), 1340 (CH, δ), 1265 ( , ν s ), 980, 910, 865, 845 ( , ν а s ). Спектр ЯМР 1 Н, δ, м.д.: 2,87 д (2Н, Н 4,6 , J 3.4 7.3 Г у ), 2,15 к (2Н, Н 12 А,13 А , J 7.0 г у ), 1,89 к (2Н, Н 12 В,13 В , J 6,9 г у ), 1,25–1,77 м (10Н, Н 1–3,8–11 ). Спектр ЯМР 13 С, δ, м.д.: 53,4 (С 4,6 ), 48,1 (С 2,8 ), 41,3 (С 3,7 ), 41,4 (С 12 ), 39,9 (С 1,9 ), 25,5 (С 10,11 ).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На селективность реакции и выход продуктов окисления влияют температура, продолжительность, природа растворителя и значение рН-среды. С повышением температуры от 40 до 70 °С и продолжительности реакции от 3.0 до 6.5 ч конверсия исходного углеводорода и выход эпоксида увеличивается. Наиболее высокие выходы (76.0–88.0 %) эпоксидов достигается при 70–80 °С и продолжительности 6.5 ч. (рис. 1.) При более жестких условиях выход эпоксидов уменьшается. В оксидате накапливается значительное количество гликолей (или их моноацетаты) и продуктов окислительной олигомеризации.

Динамика накопления продуктов окисления ТЦДЕ 35 % -ным раствором H2O2 (а) и гидропиритом (б) при разных температурах. 1,2,3,4-оксатетрацикло [6.2.1.03.5.02.7] ундекан, 1´,2´,3´,4´-трицикло [5.2.1.02.6] декандиол

Рис. 1. Динамика накопления продуктов окисления ТЦДЕ 35 % -ным раствором H 2 O 2 (а) и гидропиритом (б) при разных температурах. 1,2,3,4-оксатетрацикло [6.2.1.0 3.5 .0 2.7 ] ундекан, 1´,2´,3´,4´-трицикло [5.2.1.0 2.6 ] декандиол

Выход последних увеличивается при использовании в качестве окислителя 35–41 %-ного водного раствора Н 2 О 2 . При этом используемый растворитель существенно влияет на сольватацию «in-situ» образующегося пероксокомплекса и направлению реакции. Наиболее высокая селективность по эпоксиду достигается при использовании толуола или ксилола. Наоборот в случае использования апротоных полярных растворителей (СН 3 СN, ДМФА) селективность реакции по эпоксиду снижается.

При окислении водным раствором Н 2 О 2 реакция протекает либо в органической фазе, либо на поверхности раздела фаз. При этом перенос активного кислородного атома на кратную связь полициклических мостиковых углеводородов происходит не за счет кислорода пероксида водорода, а через стадии образования «in-situ» пероксакомплекса в водной фазе. После передачи электрофильного кислорода субстрату восстановленный комплекс с пероксидом водорода в водной фазе регенерирует свою активность. Постоянство содержания активного органической фазе достигается варьированием интенсивности перемешивания реакционной смеси. Наиболее высокая конверсия субстратов достигается при интенсивности перемешивания 600–700 об/мин. (рис.2) При использовании Н 2 О 2 ·СО(NH 2 ) 2 в уксусном (или муравьином) растворе скорость вращения мешалки не превышала 150–200 об/мин.

Зависимость конверсии ТЦДЕ от скорости перемешивания смеси. (T=80 °C, окислитель-35 %-ный водный раствор H2O2, катализатор P0.25Mo3.0CoBr0.25O10/MKM, TTDE: [0]:CH3COOH=1:2:0,2)

Рис. 2. Зависимость конверсии ТЦДЕ от скорости перемешивания смеси. (T=80 °C, окислитель-35 %-ный водный раствор H 2 O 2 , катализатор P 0.25 Mo 3.0 CoBr 0.25 O 10 /MKM, TTDE: [0]:CH 3 COOH=1:2:0,2)

Продолжительность реакции, час:1–2.0; 2–3.0; 3–4.0; 4–5.0; 5–6.0; 6–7.0; 7–8.0

ВЫВОДЫ

Разработаны условия каталитического эпоксидирования полициклических непредельных мостиковых углеводородов пероксидом водорода или гидропиритом (аддуктом Н 2 О 2 и карбамида) в присутствии фосфорполиоксомолибдата, модифицированного бромидом кобальта.

Найдены оптимальные условия выхода эпоксидов, при которых выход целевых продуктов достигает 76,0–88,0 %.

Литература:

  1. Машковский М. Д. Лекарственные средства. В 2-х Т. М.: Медицина, 2002.
  2. Алимарданов Х. М., сулейманова Э. Т. Химия природных и синтетических душистых веществ. Баку. Элм-2018, 517 с.
  3. Кашковский В. И., Григорьев А. А.// Катализ и нефтехимия, 2006, Вып.14, с.1
  4. Пальчиков В. А.// Жорх.2013.Т.49.вып6, стр.807
  5. Kuehnel M. F., Orchard K. I., Dalle K. E., Reisner E.//J.Arner.Chem.Soc. 2017. 139. Pp.7217–7223
  6. Гасанов А. И., Алиев В. М., Коробов Н. А., Талыбов Г. М., Гулиева Э. Т., Байрамов Р. К., Алимарданов Х. М. А.с. 1468585 (1988)// Б.и.1989, № 12
  7. Бабко А. К., Пятницкий И. В. Количественный анализ. М.: Высшая школа, 1962, 508 с.
Основные термины (генерируются автоматически): спектр, органическая фаза, углеводород, MKM, TTDE, активный кислород, водная фаза, водный раствор Н, мольное соотношение, эпоксидное число.


Ключевые слова

эпоксидирование, полициклические непредельные углеводороды, гидропирит, модифицированный бромидом кобальта фосфорплиоксомолибдат

Похожие статьи

Определение активности компонентов в биметаллическом расплаве

Ключевые слова: активность, коэффициент активности, мольная доля, идеальный раствор, реальный раствор.

Условно приняв двухкомпонентный раствор за идеальный раствор, определим по первому закону Раулю, как будет изменяться давление насыщенного пара...

Исследование процессов формирования и свойств...

Для начала был исследован образец, полученный в результате совместной конденсации смеси газообразной фазы метана и воды на предварительно охлажденную подложку. Осаждение проводилось при температуре подложки Т=16 К. Толщина полученной пленки была 1,25 мкм.

Оценка воздействия на здоровье населения и окружающую среду...

Эти вещества относятся к первому классу опасности и оказывают наиболее разрушительное воздействие на окружающую среду и здоровье человека. Бенз(а)пирен –один из наиболее опасных представителей группы полициклических ароматических углеводородов, канцероген...

Набухание и механические свойства гидрогелей на основе...

Благодаря данным свойствам полимерные гидрогели активно используются в качестве

Мольное соотношение АК/МБАА составляло 300/1. Для получения гидрогелей с различной

Набухание гидрогелей ПАК проводили в водных растворах с различными значениями рН (рН...

Исследование антиоксидантной активности растительности...

Определена суммарная и относительная антиоксидантная активность водных и спиртовых экстрактов, полученных из некоторых

В таблице 1 приведены значения антиоксидантной активности водных и спиртовых (водочных) экстрактов растений флоры Ферганской долины.

Извлечение скандия, тория и РЗЭ фосфиноксидом...

равновесная водная фаза, зависимость величин коэффициентов распределения, органическая фаза, величина. Извлечение короткоцепочечных жирных кислот из водных растворов метил-трет-бутиловым эфиром. концентрация, ФОРА, экстракционная система, серная кислота...

Особенности ИК-спектров пропускания пленкообразующих золей...

Анализ семейств спектров растворов золей после введения... Особенности ИК-спектров пропускания пленкообразующих золей на основе тетраэтоксисилана, содержащих модифицирующие соединения. Исследование качественного и количественного состава золей...

Индуктивное гидроксибромирование изомеров метилциклопентена...

Кислород-азотная (серная и т. д.) функционализация алифатических и циклических

На их основе разработан ряд синтетических аналогов биологически активных веществ [1]

Окислительная бифункционализация С 5 –С 12 циклоолефиновых углеводородов путем их...

Похожие статьи

Определение активности компонентов в биметаллическом расплаве

Ключевые слова: активность, коэффициент активности, мольная доля, идеальный раствор, реальный раствор.

Условно приняв двухкомпонентный раствор за идеальный раствор, определим по первому закону Раулю, как будет изменяться давление насыщенного пара...

Исследование процессов формирования и свойств...

Для начала был исследован образец, полученный в результате совместной конденсации смеси газообразной фазы метана и воды на предварительно охлажденную подложку. Осаждение проводилось при температуре подложки Т=16 К. Толщина полученной пленки была 1,25 мкм.

Оценка воздействия на здоровье населения и окружающую среду...

Эти вещества относятся к первому классу опасности и оказывают наиболее разрушительное воздействие на окружающую среду и здоровье человека. Бенз(а)пирен –один из наиболее опасных представителей группы полициклических ароматических углеводородов, канцероген...

Набухание и механические свойства гидрогелей на основе...

Благодаря данным свойствам полимерные гидрогели активно используются в качестве

Мольное соотношение АК/МБАА составляло 300/1. Для получения гидрогелей с различной

Набухание гидрогелей ПАК проводили в водных растворах с различными значениями рН (рН...

Исследование антиоксидантной активности растительности...

Определена суммарная и относительная антиоксидантная активность водных и спиртовых экстрактов, полученных из некоторых

В таблице 1 приведены значения антиоксидантной активности водных и спиртовых (водочных) экстрактов растений флоры Ферганской долины.

Извлечение скандия, тория и РЗЭ фосфиноксидом...

равновесная водная фаза, зависимость величин коэффициентов распределения, органическая фаза, величина. Извлечение короткоцепочечных жирных кислот из водных растворов метил-трет-бутиловым эфиром. концентрация, ФОРА, экстракционная система, серная кислота...

Особенности ИК-спектров пропускания пленкообразующих золей...

Анализ семейств спектров растворов золей после введения... Особенности ИК-спектров пропускания пленкообразующих золей на основе тетраэтоксисилана, содержащих модифицирующие соединения. Исследование качественного и количественного состава золей...

Индуктивное гидроксибромирование изомеров метилциклопентена...

Кислород-азотная (серная и т. д.) функционализация алифатических и циклических

На их основе разработан ряд синтетических аналогов биологически активных веществ [1]

Окислительная бифункционализация С 5 –С 12 циклоолефиновых углеводородов путем их...

Задать вопрос