Внедрение тригенерационных установок как способ повышения эффективности энергосистем | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 4 мая, печатный экземпляр отправим 8 мая.

Опубликовать статью в журнале

Авторы: ,

Рубрика: Технические науки

Опубликовано в Молодой учёный №20 (362) май 2021 г.

Дата публикации: 17.05.2021

Статья просмотрена: 220 раз

Библиографическое описание:

Ефремова, С. А. Внедрение тригенерационных установок как способ повышения эффективности энергосистем / С. А. Ефремова, А. Н. Зацепина. — Текст : непосредственный // Молодой ученый. — 2021. — № 20 (362). — С. 80-83. — URL: https://moluch.ru/archive/362/81114/ (дата обращения: 23.04.2024).



Одной из наиболее заметных тенденций развития энергетики России является повышение коэффициента полезного действия современных энергосистем путем внедрения технологий комбинированного энергопроизводства. Раздельная генерация электрической и тепловой энергии в настоящее время отходит на второй план, уступая место когенерационным установкам, показатели эффективности которых, однако, в теплые сезоны года значительно падают в связи с отсутствием необходимости в отоплении различных помещений, что в свою очередь приводит к существенному росту теплового загрязнения окружающей среды. Инновационным инженерным решением подобной проблемы является применение тригенерационного комплекса.

Процесс тригенерации представляет собой совместное производство электрической, тепловой и холодильной видов энергии. При этом первые два полезных энергетических эффекта являются результатом преобразования первичного топлива в когенерационной установке, наиболее распространенным вариантом которой является газопоршневой электроагрегат, холод же — в зависимости от типа холодильной машины: абсорбционной (АБХМ) и парокомпрессионной (ПКХМ) соответственно — может генерироваться как из тепло-, так и из электроэнергии.

Рассмотрим цикл работы тригенерационной установки с применением АБХМ, как наиболее обоснованного с точки зрения эффективности утилизации тепла варианта. Принципиальная схема комплекса представлена на рисунке 1.

Принципиальная схема тригенерационной установки с АБХМ

Рис. 1. Принципиальная схема тригенерационной установки с АБХМ

Цикл начинается в когенерационной части установки: поршневой двигатель внутреннего сгорания преобразует количество теплоты, выделившееся при сгорании топлива, в механическую работу, поступающую на ротор генератора, где она и конвертируется в электроэнергию. При этом отработавшие газы, температура которых достигает 180 , поступают в рекуперативный теплообменник, отдавая тепло водяному пару, одна часть которого может идти в систему отопления или горячего водоснабжения, а другая поступает в абсорбционную холодильную машину, завершая процесс когенерации.

Принцип работы АБХМ заключается в следующем: поступающий из рекуперативного теплообменника пар становится причиной нагрева слабого раствора бромида лития LiBr, увеличивая его концентрации путем выпаривания воды, которая в свою очередь по патрубкам в газообразном состоянии отправляется в конденсатор, где под действием охлаждающей среды вновь становится жидкостью. Затем наступает следующий этап: после конденсатора в вакууме хладагент легко испаряется, поглощая тепло циркулирующей в другом контуре испарителя воды и генерируя холодильную энергию. Вновь образованный пар затем поступает в абсорбер, где поглощается концентрированным раствором бромистого лития, тем самым разбавляя его и замыкая рабочий цикл.

Одновременная выработка трех видов энергии значительно увеличивает эффективность устройства. В таблице 1 представлены значения КПД для установок раздельного производства тепловой и электрической энергии, когенерационных и тригенерационных комплексов. Для удобства сравнения установим электрическую мощность на выходе в 200 кВт, а тепловую — в 320 кВт, причем ее часть в системе с АБХМ может преобразовываться в холод. Данные значения распределения энергетических потоков берутся на основании технической документации тригенерационной установки, вырабатывающей данную мощность [4]. В качестве же КПД тепловой котельной и конденсационной электростанции используются усредненные величины.

Таблица 1

Энергоэффективность различных типов установок

Тип установки

Потребляемая мощность, кВт

Энергия, кВт

Общий КПД, %

Электр.

Тепло

Холод

1

Тепловая

356

850

-

320

-

90

53

2

Конденсационная

572

200

-

-

35

3

Когенерационная

572

200

320

-

91

4

Тригенерационная

572

200

74–320

246–0

91

Согласно данным таблицы, КПД когенерационных и тригенерационных установок примерно равны между собой, а также их применение более чем в 1,5 раза продуктивнее раздельной генерации энергий. Однако системы, включающие в себя абсорбционные холодильные машины, обладают целым рядом других преимуществ над когенерационными комплексами. Основными из них являются:

— генерация дополнительного энергетического эффекта — холода;

— возможность учитывать сезонность потребности потребителей в тепловой или же, напротив, в холодильной энергии;

— круглогодичное условное постоянство КПД;

— повышение экологичности производства.

В заключение следует отметить, что применение тригенерационных систем постепенно находит все большее распространение в связи с тем, что по сравнению с традиционными генерирующими установками обладают беспрецедентной эффективностью, позволяя преобразовывать энергию первичного сырья с исключительно высоким КПД. Кроме того, они являются более экологичными, так как в значительной мере снижают уровень тепловых выбросов в окружающее пространство.

Литература:

  1. Астапова, Ю. А. Когенеративные установки / Ю. А. Астапова, К. С. Шульга, А. А. Бубенчиков. — Текст: непосредственный // Потенциал современной науки. — 2014. — № 8. — С. 9–13.
  2. Дзино, А. А. Абсорбционные холодильные машины: Учеб.-метод. пособие / А. А. Дзино, О. С. Малинина. — СПб: Университет ИТМО, 2015. — 68 c.
  3. Зайнуллин, Р. Р. Опыт эксплуатации абсорбционных холодильных машин / Р. Р. Зайнуллин, А. А. Галяутдинов. — Текст: непосредственный // Инновационная наука. — 2016. — № 6. — С. 91–93.
  4. Тригенерация. — Текст: электронный // INNIO: [сайт]. — URL: https://www.innio.com/ru/rucis/resheniya/proizvodstvo-elektroenergii/trigeneratsiya (дата обращения: 14.05.2021).
Основные термины (генерируются автоматически): установка, вид энергии, холодильная энергия.


Похожие статьи

Коэффициент полезного действия электрохимического генератора

Говоря о потерях энергии, следует чётко понимать, что энергия на самом деле никуда не теряется, а просто переходит в другой вид энергии, который

С помощью теплового насоса и холодильной установки осуществляется передача энергии в форме тепла от охладителя...

Исследование эффективности использования энергии системами...

энергия, которая нее может быть полностью превращена в другой вид энергии.

Система кондиционирования воздуха воздушного судна и встроенная в нее холодильная установка будут работать по принципу системы «Умное воздушное судно», аналогом которой...

Повышение эффективности и энергосбережения в холодильных...

 Интенсификация теплообмена в конденсаторах холодильных машин дала возможность увеличить её производительность и уменьшить расход электрической энергии.

В этих системах большую часть оборудования занимают теплообменные аппараты различных видов.

Исследование углубленной холодильной камеры в регулируемой...

Ключевые слова: энергоемкость, энергия, гелиовоздухонагреватель, плодоовощехранилище, холодильная камера, адсорбционная установка, солнечная энергия, термическая регенерация. Длительное хранение плодоовощных продуктов (ПОП)...

Применение теплового насоса в Ленинградской области

Заменой традиционных источников тепловой энергии, а именно газовых, жидкостных и

Холодильный и отопительный коэффициенты теплового насоса.

теплонасосная установка, тепловой насос, холодильная машина, хладагент, обратный цикл Карно, компрессор, дроссель.

Газопоршневые установки как альтернативный способ генерации...

Проблема генерации собственной электрической и тепловой энергии стала заметно

Кроме того, они могут работать как в составе холодильных установок, так и для привода насосов и

За счет собственной генерации энергии потребитель платит только за используемый газ, и...

Снижение затрат энергии в теплохладоснабжении...

В статье рассмотрена задача экономии энергии оптимального термостатирования в

Задачу (1), (4), (6) о минимуме затрат энергии на привод теплового насоса запишем в следующем виде

Мощность, потребляемая электродвигателем компрессора теплонасосной установки.

Энергетическая установка на постоянных магнитах

В данной работе представлена модель энергетической установки — магнитотеплового двигателя как альтернативного источника энергии.

Библиографическое описание: Семенов, В. В. Энергетическая установка на постоянных магнитах / В. В. Семенов, Н. С. Сидоренко.

Определение эксплуатационных параметров теплового насоса

− тепловая мощность источника низкопотенциальной энергии. Основные термины (генерируются автоматически): тепловой насос

Регулирования параметров теплонасосной установки. Ключевые слова:теплонасосная установка, тепловой насос, холодильная машина...

Похожие статьи

Коэффициент полезного действия электрохимического генератора

Говоря о потерях энергии, следует чётко понимать, что энергия на самом деле никуда не теряется, а просто переходит в другой вид энергии, который

С помощью теплового насоса и холодильной установки осуществляется передача энергии в форме тепла от охладителя...

Исследование эффективности использования энергии системами...

энергия, которая нее может быть полностью превращена в другой вид энергии.

Система кондиционирования воздуха воздушного судна и встроенная в нее холодильная установка будут работать по принципу системы «Умное воздушное судно», аналогом которой...

Повышение эффективности и энергосбережения в холодильных...

 Интенсификация теплообмена в конденсаторах холодильных машин дала возможность увеличить её производительность и уменьшить расход электрической энергии.

В этих системах большую часть оборудования занимают теплообменные аппараты различных видов.

Исследование углубленной холодильной камеры в регулируемой...

Ключевые слова: энергоемкость, энергия, гелиовоздухонагреватель, плодоовощехранилище, холодильная камера, адсорбционная установка, солнечная энергия, термическая регенерация. Длительное хранение плодоовощных продуктов (ПОП)...

Применение теплового насоса в Ленинградской области

Заменой традиционных источников тепловой энергии, а именно газовых, жидкостных и

Холодильный и отопительный коэффициенты теплового насоса.

теплонасосная установка, тепловой насос, холодильная машина, хладагент, обратный цикл Карно, компрессор, дроссель.

Газопоршневые установки как альтернативный способ генерации...

Проблема генерации собственной электрической и тепловой энергии стала заметно

Кроме того, они могут работать как в составе холодильных установок, так и для привода насосов и

За счет собственной генерации энергии потребитель платит только за используемый газ, и...

Снижение затрат энергии в теплохладоснабжении...

В статье рассмотрена задача экономии энергии оптимального термостатирования в

Задачу (1), (4), (6) о минимуме затрат энергии на привод теплового насоса запишем в следующем виде

Мощность, потребляемая электродвигателем компрессора теплонасосной установки.

Энергетическая установка на постоянных магнитах

В данной работе представлена модель энергетической установки — магнитотеплового двигателя как альтернативного источника энергии.

Библиографическое описание: Семенов, В. В. Энергетическая установка на постоянных магнитах / В. В. Семенов, Н. С. Сидоренко.

Определение эксплуатационных параметров теплового насоса

− тепловая мощность источника низкопотенциальной энергии. Основные термины (генерируются автоматически): тепловой насос

Регулирования параметров теплонасосной установки. Ключевые слова:теплонасосная установка, тепловой насос, холодильная машина...

Задать вопрос