Отправьте статью сегодня! Журнал выйдет 2 августа, печатный экземпляр отправим 6 августа
Опубликовать статью

Молодой учёный

Организация поиска в информационной системе

Информационные технологии
17.05.2021
396
Поделиться
Библиографическое описание
Глацкевич, О. В. Организация поиска в информационной системе / О. В. Глацкевич. — Текст : непосредственный // Молодой ученый. — 2021. — № 20 (362). — С. 22-24. — URL: https://moluch.ru/archive/362/81047/.


В статье рассматриваются теоретические основы организации поиска в информационной системе.

Ключевые слова: поиск, поисковый индекс, релевантность, ранжирование.

По мере накопления документов в информационных системах неминуемо возникает необходимость в организации эффективного механизма поиска информации в системе. Современная система должна отвечать таким критерием поиска, как быстрая скорость поиска и высокая степень соответствия найденных документов поисковому запросу. Для достижения этих целей эффективно использовать полнотекстовый поиск информации, выполняющий поиск документов по их содержимому.

В общем виде применяется следующая стратегия информационного поиска:

1. Формулировка запроса.

2. Морфологические преобразования информативных слов запроса.

3. Поиск релевантных документов.

4. Определение степени релевантности документов.

5. Ранжирование документов.

6. Предоставление результата поиска.

Система поиска осуществляет полнотекстовый поиск документов в коллекции документов на основе информационно-поискового языка и соответствующих правил поиска. На основе текстовых данных выполняется построение инвертированного индекса, который представляет из себя структуру данных, состоящую из морфологического словаря, где каждому слову словаря соотносится список номеров документов, в которых это слово встречается (рис.1).

Инвертированный индекс

Рис. 1. Инвертированный индекс

Индексатор получает текст на вход, выполняет морфологические преобразования текста (приведение к лексемам или корневой основе слова, символьные фильтры, исключение стоп-слов) и сохраняет в поисковый индекс, сопоставляя каждому слову набор документов. Этот процесс называется индексированием. Также в индексе сохраняется метаинформация (позиция слова в документе, частота встречаемости слова в документе и во всей коллекции документов).

При получении поискового запроса система поиска выполняет предварительную обработку слов поискового запроса, которая включает: исключение стоп-слов и знаков пунктуации, приведение текста к нижнему регистру, лемматизация (приведение слов к начальной форме слова), исправление ошибок в словах поискового запроса, расшифровка аббревиатур и сокращений.

После прохождения разбора поисковой фразы формируется результат пересечения списков инвертированного индекса в виде набора документов, содержащих слова запроса. Сортировка документов выполняется на основе факторов ранжирования, выставляя каждому документу весовой коэффициент. Данный коэффициент является суммой величин факторов ранжирования, вычисленного для определенного документа. Документ с максимальным весовым коэффициентом будет на первом месте результатов поиска.

Факторы ранжирования являются характеристиками алгоритма поисковой системы, выполняющие анализ документов информационного массива на соответствие заданным требованиям с целью определения степени релевантности документов и представляют собой произвольные арифметические выражения, которые могут использовать константы, атрибуты документов, встроенные функции и логические операторы.

Основными факторами ранжирования системы поиска являются факторы встречаемости слов запроса в документе и во всей коллекции документов (насколько это частое либо редкое слово), а также порядка (близости) следования слов запроса в тексте документа.

Для оценки важности слова в контексте документа, являющегося частью коллекции документов, часто применяется статистическая мера TF-IDF, где вес некоторого слова пропорционален частоте употребления этого слова в документе и обратно пропорционален частоте употребления слова во всех документах коллекции. Рассмотрим далее одну из основных функций ранжирования, которая учитывает частоту встречаемости слов поискового запроса в коллекции документов.

TF (term frequency — частота слова) — отношение числа вхождений некоторого слова к общему числу слов документа. Таким образом, оценивается важность слова в пределах отдельного документа.

(1)

где — количество вхождений слова в документе;

— общее количество слов в данном документе.

Чем больше значение TF, тем документ является более релевантным по отношению к слову .

IDF (inverse document frequency — обратная частота документа) — инверсия частоты, с которой некоторое слово встречается в документах коллекции. IDF уменьшает вес широкоупотребительных слов. Для каждого уникального слова в пределах конкретной коллекции документов существует только одно значение IDF. Чем более редкое слово, тем более релевантен документ, в котором оно найдено.

, (2)

где общее количество документов в коллекции;

— количество документов из коллекции , в которых встречается слово (когда ).

Выбор основания логарифма в формуле не имеет значения, поскольку изменение основания приводит к изменению веса каждого слова на постоянный множитель, что не влияет на соотношение весов.

Для того, чтобы учесть и частоту слова, и обратную частоту документа, необходимо перемножить эти 2 величины. Итого, для каждого слова и документа в коллекции документов можно рассчитать меру TF-IDF, которая является произведением двух сомножителей:

, (3)

Наибольший вес в TF-IDF получат слова с высокой частотой в пределах конкретного документа и с низкой частотой употреблений в других документах.

BM25 — поисковая функция на множестве документов, которые она оценивает на основе встречаемости слов запроса в каждом документе, без учета взаимоотношений между ними (например, близости). В формулу входят TF, IDF каждого из слов, свободные коэффициенты, длина документа и средняя длина документа в корпусе.

Пусть дан запрос , содержащий слова , тогда функция BM25 дает следующую оценку релевантности документа D запросу Q:

, (4)

где — частота слова в документе ;

— длина документа (количество слов в нем);

— средняя длина документа в коллекции;

и — свободные коэффициенты, обычно их выбирают как и ;

— обратная документная частота слова .

BM25 и его различные более поздние модификации представляют собой современные TF-IDF-подобные функции ранжирования, широко используемые на практике в поисковых системах. В веб-поиске эти функции ранжирования часто входят как компоненты более сложной, часто машинно-обученной, функции ранжирования.

Литература:

1. Кристофер Д. Маннинг, Прабхакар Рагхаван, Хайнрих Шютце Введение в информационный поиск. — Москва, 2011. — 483 с.

2. TF-IDF — Текст: электронный // Свободная энциклопедия Википедия: [сайт]. — URL: https://ru.wikipedia.org/wiki/TF-IDF (дата обращения: 08.05.2021).

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
поиск
поисковый индекс
релевантность
ранжирование
Молодой учёный №20 (362) май 2021 г.
Скачать часть журнала с этой статьей(стр. 22-24):
Часть 1 (стр. 1-73)
Расположение в файле:
стр. 1стр. 22-24стр. 73

Молодой учёный