Синтез фотокаталитических наноматериалов Zn1-xAgxO методом сжигания геля | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 4 мая, печатный экземпляр отправим 8 мая.

Опубликовать статью в журнале

Авторы: ,

Рубрика: Химия

Опубликовано в Молодой учёный №10 (352) март 2021 г.

Дата публикации: 08.03.2021

Статья просмотрена: 40 раз

Библиографическое описание:

Динь, Ван Так. Синтез фотокаталитических наноматериалов Zn1-xAgxO методом сжигания геля / Ван Так Динь, Тхи Зуен Ву. — Текст : непосредственный // Молодой ученый. — 2021. — № 10 (352). — С. 11-15. — URL: https://moluch.ru/archive/352/79021/ (дата обращения: 25.04.2024).



Введение

Существует много методов обработки токсичных органических соединений, трудно разлагающихся в воде, в которых широко используются полупроводниковые фото каталитические методы, поскольку высокоэффективны [1].

В последнее время некоторые полупроводники используются в качестве фотокатализаторов, таких как ZnO, TiO 2 , Zn 2 TiO 3 .... Среди них TiO 2 был изучен очень много. По сравнению с TiO 2 оксид цинка (ZnO) имеет большую запрещенную зону (3,27 эВ), что эквивалентно запрещенной зоне TiO 2 (3,3 эВ), и его фотокаталитическая реакция аналогична TiO 2 , но ZnO имеет более широкий спектр поглощения солнечного света [2–3]. Поэтому ZnO является перспективным фотокатализатором для разложения токсичных органических соединений.

Показано, что наиболее эффективным способом увеличения фотокаталитической активности ZnO в видимой области путем уменьшения ширины запрещенной зоны является уменьшение размера материалов или замещение цинка в ZnO некоторыми металлами [1–3].

Цель настоящей работы — синтез фотокаталитических наноматериалов Zn 1- x Ag x O (x=0; 0,01; 0,02; 0,03) и изучение их фотокаталитической активности в разложении метиленового синего и ализарина красного.

Э кспериментальная часть

Синтез нано Zn 1-x Ag x O : нанопорошки Zn 1-x Ag x O (x = 0; 0,01; 0,02; 0,03), синтезированы методом сжигания геля лимонной кислоты с Zn(NO 3 ) 2 .6H 2 O, AgNO 3 согласно соответствующему соотношению молей. Перемешивают и нагревают полученный раствор при 70°С в течение 4 ч, пока раствор не приобретет высокую вязкость, затем сушат при температуре около 70–80°С в течение 7 ч. Затем, прокаленный при температуре 500°С в течение 3 ч, мы получаем нанопорошки Zn 1-x Ag x O (x = 0; 0,01; 0,02; 0,03).

Материалы после синтеза характеризуются рентгенофазовым анализом (РФА) и методом энергодисперсионной рентгеновской спектроскопии (ЭДС).

Исследование фотокаталитической способности нанопорошков Zn 1-x Ag x O для реакции разложения метиленового синего и ализарина красного:

Использование Zn1-xAgxO с концентрацией 1 г / л для обработки метиленового синего 10 ppm и ализарина красного 10ppm. Регулировали рН раствора 8, помешивая в темноте в течение 30 минут. Эти растворы освещаются непосредственно компактной лампой при постоянном перемешивании в течение 120 минут. Определение содержания метиленового синего и ализарина красного в растворе, полученном после центробежной фильтрации, фотометрическим методом при соответственно 665 нм и 423 нм.

Эффективность фотокаталитического процесса Н (%) рассчитывали по формуле:

где C 0 , C — концентрации органических цветных соединений в растворе до и после фотокаталитического разложения.

Обсуждение результатов

1. Фазовый состав материалов — спектр РФА

По данным РФА (рис. 1), образцы номинального состава Zn 1-x Ag x O (x=0; 0,01; 0,02; 0,03), термообработанные при 500 o C в течение 3 ч, являются однофазными и имеют гексагональную структуру (такой же, как у структуры wurtzite ZnO). Основные пики соответствуют гексагональной структуры wurtzite ZnO (JCPDS No. 01–089–1397). Таким образом, замещение Ag в ZnO не изменяет гексагональную структуру wurtzite ZnO.

Дифрактограммы образцов Zn1-xAgxO: x=0 (а), x=0,01 (б), x=0,02 (c), x=0,03 (д)

Рис. 1. Дифрактограммы образцов Zn 1-x Ag x O: x=0 (а), x=0,01 (б), x=0,02 (c), x=0,03 (д)

Расчет размеров областей когерентного рассеяния (ОКР) образцов Zn 1-x Ag x O проводили по формуле Шеррера по ширине дифракционных максимумов 101. Все результаты приведены в таб.1.

Таблица 1

Размер нанопорошков Zn 1-x Mn x O (x=0,00 ÷0,03)

Образцы Zn 1-x Mn x O

2 , градусов

λ , нм

, градусов

D , нм

x=0,00

36,288

0,154056

0,328

24,2

x= 0,01

36,297

0,154056

0,355

22,4

x= 0,02

36,294

0,154056

0,401

19,8

x= 0,03

36,282

0,154056

0,434

18,3

По среднему размеру кристаллов образцов Zn 1-x Ag x O было обнаружено, что все полученные частицы были наноразмерными. При увеличении содержания замещения Zn на Ag(x) с 0,00 до 0,03 размер частиц Zn 1-x Ag x O уменьшился с 24,2 до 18,3 нм. Такая закономерность связана с заменой цинка серебром и, соответственно, с искажением кристаллической решетки, в результате чего создается внутреннее напряжение, приводящее к ограничению увеличения кристаллов.

Чтобы проверить наличие элементов в материале, мы измерили энергетические дисперсионные спектры ЭДС Zn 0,98 Ag 0,02 O. Полученные результаты представлены на рис. 2.

Спектры ЭДС образца Zn0,98Ag0,02O

Рис. 2. Спектры ЭДС образца Zn 0,98 Ag 0,02 O

Результаты ЭДС — спектроскопии образца Zn 0,98 Ag 0,02 O подтвердили чистоту полученного образца. В дополнение к пикам, характерным для Zn и O с большой интенсивностью, имеется также пик Ag в положении 3 кэВ, демонстрирующий присутствие Ag в материале ZnO.

Из массового процента Zn (76,20 %) и Ag (3,05 %) делаем вывод, что процентное содержание молей Ag 2,3 %, примерно равное фактическому значению фазы образца (2 %)

2. Результаты изучения фотокаталитической активности материалов в разложении метиленового синего и ализарина красного

Результаты изучения фотокаталитической активности материала Zn 0,98 Ag 0,02 O в разложении метиленового синего и ализарина красного были представлены на рис. 3.

Эффективность обработки метиленового синего (MB) и ализарина красного (ARS) материала Zn0,98Ag0,02O соответствует разной световой мощности

Рис. 3. Эффективность обработки метиленового синего (MB) и ализарина красного (ARS) материала Zn 0,98 Ag 0,02 O соответствует разной световой мощности

Экспериментальные результаты показывают, что когда материал не освещен, Zn 0,98 Ag 0,02 O не может обрабатывать как метиленовый синий (H = 0,09 %), так и ализарин красный (H = 0,41 %). При использовании для освещения компактных ламп мощностью от 15 Вт до 40 Вт эффективность обработки органических цветных соединений достаточно высока, достигая 76–86 % для метиленового синего и 52–82 % для ализарина красного. Это доказывает, что материал ZnO, легированный серебром, способен катализировать реакцию разложения органических цветных соединений в видимой области спектра.

Результаты исследований также показали, что мощность лампы сильно влияет на эффективность фотокаталитического разложения. При увеличении мощности лампы с 15 Вт до 40 Вт фотокаталитическая реакция метиленового синего и ализарина материала Zn 0,98 Ag 0,02 O° увеличивает ∆H ≈ 10 % и 30 % соответственно.

Это объясняется тем, что при увеличении интенсивности света каталитический материал Zn 0,98 Ag 0,02 O поглощает большое количество энергии, которая приводит к образованию активного свободного радикала OH*. Этот свободный радикал способен окислять большинство органических цветных соединений и превращать их в неорганические соединения, такие как CO 2 , H 2 O и неорганические кислоты.

Чтобы прояснить роль Ag, мы используем четыре материала: чистый ZnO; ZnO, легированный 1 % Ag; 2 % и 3 % для проведения фотокатализа. Результаты показаны на рис. 4.

Легко видеть, что легирование ZnO серебром значительно увеличивает фотокаталитическую эффективность органических цветных соединений в видимом свете. Материал, содержащий 1 % Ag, имеет фотокаталитическую эффективность метиленового синего (H = 80 %) и ализарина красного (H = 52 %) в 6 раз и в 4 раза выше, чем у чистого материала ZnO (H ≈ 13 %). При увеличении содержания легированного Ag эффективность реакции увеличивалась, затем постепенно снижалась, при значении легированного серебра 2 % материал имел самую высокую фотокаталитическую активность (H = 86 % и 79 %).

Эффективность обработки метиленового синего (MB) и ализарина красного (ARS) материалов Zn1-xAgxO (x = 0; 0,01; 0,02; 0,03)

Рис. 4. Эффективность обработки метиленового синего (MB) и ализарина красного (ARS) материалов Zn 1-x Ag x O (x = 0; 0,01; 0,02; 0,03)

Фотокаталитическая активность ZnO, легированного серебром, была намного выше, чем у чистого ZnO, что могло быть связано с тем, что Ag входит в гексагональную структуру ZnO, занимая электроны из зоны проводимости. Этот процесс уменьшает рекомбинацию положительно заряженных дырок и электронов на поверхности ZnO. Приводит к тому, что электроны легко перемещаются вверх в область проводимости или дырки легко перемещаются вниз в область валентности. Кроме того, легирование Ag также уменьшает средний размер материала (таб.1), что приводит к уменьшению ширины запрещенной зоны. Следовательно, при легировании Ag каталитическая активность материала сильно возрастает.

Однако, когда концентрация легированного Ag велика (x > 0,02), многие атомы Ag переходят в гексагональную структуру ZnO, что может мешать поглощению света материала, что приводит к снижению каталитической активности.

Заключение

Таким образом, методом сжигания геля с использованием лимонной кислоты синтезированы нанопорошки Zn 1-x Ag x O. По данным РФА, образцы имеют однофазными и имеют гексагональную структуру wurtzite ZnO и наноразмеры. Результаты ЭДС -спектроскопии образца Zn 0,98 Ag 0,02 O показали присутствие Ag в кристалле ZnO с отношением молярного отношения примерно к фактическому значению фазы образца.

Исследована фотокаталитическая активность материалов Zn 1-x Ag x O под действием видимого света компактной лампы. Результаты показали, что 2 % Ag, легированный ZnO, обладал самой высокой фотокаталитической активностью для разложения метиленового синего и ализарина красного.

Литература:

  1. Chen, C., J.Liu, P.Liu and B.Yu. Investigation of Photocatalytic Degradation of Methyl Orange by Using Nano-Sized ZnO Catalysts. // Adv. Chem. Engi. Sci. — 2011. Vol. 1. — P. 9–14.
  2. R. Velmurugan, M. Swaminathan. An efficient nanostructured ZnO for dye sensitized degradation of Reactive Red 120 dye under solar light. // Solar Energy Materials & Solar Cells. — 2011. Vol. 95. — P. 942- 950.
  3. A. Jagannatha Reddy, M. K. Kokila, H. Nagabhushana. EPR and photoluminescence studies of ZnO:Mn nanophosphors prepared by solution combustion route. // Spectrochim. Acta Part A. — 2011. Vol. 79. — P. 476- 480.
Основные термины (генерируются автоматически): ализарин красного, гексагональная структура, ARS, запрещенная зона, материал, соединение, фотокаталитическая активность, эффективность обработки, компактная лампа, лимонная кислота.


Похожие статьи

Фотокаталитические свойства наноразмерного оксида цинка...

Фотокаталитическая активность наноразмерного оксида цинка изучена на спектрофотометре марки Jasko-V555 UV/Vis spectrophotometer (Япония). Результаты иих обсуждения. На рис.2 представлена дифрактограмма образца цинка, полученного в микроэмульсии (вода-бензол), с использованием энергии импульсной плазмы.

Фотокаталитическая активность наноразмерного оксида цинка, отделенного от металлического цинка и его гидрооксида центрифугированием, изучена спектрофотометрическим методом по фотодеградации в УФ-излучении метиленового синего.

Оксид цинка является прямозонным полупроводниковым соединением с шириной запрещенной зоны эВ у объемного образца и эВ у. Контролируя уровень легирования, можно получать оксид цинка с металлической проводимостью при сохранении оптической прозрачности.

Синтез нанопорошков Zn1-xMnxO и применение разложения...

Материалы после синтеза характеризуются рентгенофазовым анализом (РФА). Исследование фотокаталитической способности нанопорошков Zn1-xMnxO для реакции разложения Родамина Б: Добавляли 100 мл раствора Родамина Б 10 мг/л в 4 стеклянных стаканов по 250 мл. Регулировали рН раствора 4. Затем добавляли 120 мг нанопорошков Zn1-xMnxO (х = 0,00; х = 0,01; х = 0,02; х = 0,03) соответственно в 4 стакана, помешивая в темноте в течение 30 минут.

Основные термины (генерируются автоматически): гексагональная структура, запрещенная зона, фотокаталитическая активность, JCPDS, компактная лампа, лимонная кислота, метод сжигания геля, раствор, течение, фотокаталитическая активность материалов. Похожие статьи.

Оптимизация анализа аспирина методом высокоэффективной...

ВЭЖХ позволяет проводить одновременное разделение сложных проб на составляющие соединения, детектирование большинства компонентов, измерение концентрации одного или нескольких соединений. В настоящее время ВЭЖХ широко используется в анализе лекарственных

детектора, так и собственно хроматографов. В то же время в отдельных случаях эти ограничения могут способствовать высокой селективности анализа [1]. Материалы и методы исследования. Оборудование: Высокоэффективный жидкостный хроматограф Agilent 1100 c хроматографической колонкой с18 и диодно-матричным детектором.

Фосфатный буфер потребовался в связи с необходимостью перевести в одну форму ацетилсалициловую кислоту, которая может присутствовать в двух формах — протонированной и ионной. Фосфатный буфер с pH 2.3 был приготовлен по методике, описанной у F. Pragst — UV Spectra of Toxic Compounds...

Влияние жилого пространства на формирование социальных...

Электронная почта. Ваш вопрос. Нажимая кнопку «Отправить», вы даете согласие на обработку своих персональных данных.

Исследование фотокаталитической активности в реакции...

Исследована фотокаталитическая активность материалов Zn 1-x Ag x O под действием видимого света компактной лампы. Результаты показали, что 2 % Ag, легированный ZnO (Zn 0.98 Ag 0.02 O), обладал самой высокой фотокаталитической активностью для разложения метиленового синего и ализарина красного.

Использование Zn 0.98 Ag 0.02 O с массой m (г) для обработки метиленового синего 10 ppm. Регулировали рН раствора 8, помешивая в темноте в течение 30 минут. Эти растворы освещаются непосредственно компактной лампой при постоянном перемешивании в течение 120 минут. Определение содержания метиленового синего в растворе, полученном после центробежной фильтрации, фотометрическим методом при 665 нм.

Синтез мезоструктурированного материала nCr2O3/SBA-15 и его...

Цель настоящей работы — синтез мезоструктурированного материала nСr2О3/SBA-15 и их применение для адсорбции красного ализарина С. Экспериментальная часть. SBA-15 был синтезирован по методике [3]: добавили 2 г блок — сополимер Pluronic P123 в стеклянный мерный стакан (100 мл), затем 15 мл дистиллированной воды и 60 г раствора HCl 2М.

Материалы nCr2O3/SBA-15 сохраняют структуру и морфологию материала SBA-15, но присутствие Cr2O3 приводит к изменению свойств поверхности. С увеличением содержания Cr2O3 площадь поверхности материалов уменьшается, а диаметр пор повышается. Исследована адсорбционная способность для красного ализарина С материала nCr2O3/SBA-15.

Опыт применения бесполимерного самоотклоняющегося...

Эффективность солянокислотных обработок (СКО) зависит в первую очередь от глубины проникновения кислоты в пласт и от полноты растворения в кислотном растворе коллектора. В процессе обработки призабойной зоны пласта чистой соляной кислотой максимальное ее воздействие на породу происходит в прискважинной зоне.

По технологии двух компаний ООО «Группа компаний «Интехпромсервис» и ЗАО «НТЦ ГЕОТЕХНОКИН» предложен кислотный метод воздействия с применением бесполимерного самоотклоняющегося кислотного состава (БСКС). БСКС — это отклонитель на основе ПАВ и органической кислоты. При закачке в скважину БСКС имеет вязкость сопоставимую с вязкостью воды (1–3 мПа∙с). В пласте, по мере реагирования породы с органической кислотой, входящей в состав этого кислотного отклонителя, происходит набор вязкости до 200–250 мПа∙с и временная закупорка созданных...

Физико-химические свойства редкоземельных элементов...

Редкоземельные элементы, как материалы для исследования процессов по их легированию в другие материалы, являются малоизученными, и пока технологически сложными. Например, соединения эрбия из-за высоких окислительных свойств являются нестабильными, легко взаимодействуют с воздухом и водой, а в обычных технологических процессах изготовления оптических усилителей используются водные растворы хлорида эрбия.

В семействе лантаноидов элементы имеют два внешних электронных слоя, которые построены почти одинаково, а изменения претерпевает третий слой, число электронов которого возрастает от 18 до 32 (от лантана к лютецию). Так как химические свойства элементов связаны со структурой внешних электронных слоев, изменение числа электронов отражается на них довольно слабо.

Похожие статьи

Фотокаталитические свойства наноразмерного оксида цинка...

Фотокаталитическая активность наноразмерного оксида цинка изучена на спектрофотометре марки Jasko-V555 UV/Vis spectrophotometer (Япония). Результаты иих обсуждения. На рис.2 представлена дифрактограмма образца цинка, полученного в микроэмульсии (вода-бензол), с использованием энергии импульсной плазмы.

Фотокаталитическая активность наноразмерного оксида цинка, отделенного от металлического цинка и его гидрооксида центрифугированием, изучена спектрофотометрическим методом по фотодеградации в УФ-излучении метиленового синего.

Оксид цинка является прямозонным полупроводниковым соединением с шириной запрещенной зоны эВ у объемного образца и эВ у. Контролируя уровень легирования, можно получать оксид цинка с металлической проводимостью при сохранении оптической прозрачности.

Синтез нанопорошков Zn1-xMnxO и применение разложения...

Материалы после синтеза характеризуются рентгенофазовым анализом (РФА). Исследование фотокаталитической способности нанопорошков Zn1-xMnxO для реакции разложения Родамина Б: Добавляли 100 мл раствора Родамина Б 10 мг/л в 4 стеклянных стаканов по 250 мл. Регулировали рН раствора 4. Затем добавляли 120 мг нанопорошков Zn1-xMnxO (х = 0,00; х = 0,01; х = 0,02; х = 0,03) соответственно в 4 стакана, помешивая в темноте в течение 30 минут.

Основные термины (генерируются автоматически): гексагональная структура, запрещенная зона, фотокаталитическая активность, JCPDS, компактная лампа, лимонная кислота, метод сжигания геля, раствор, течение, фотокаталитическая активность материалов. Похожие статьи.

Оптимизация анализа аспирина методом высокоэффективной...

ВЭЖХ позволяет проводить одновременное разделение сложных проб на составляющие соединения, детектирование большинства компонентов, измерение концентрации одного или нескольких соединений. В настоящее время ВЭЖХ широко используется в анализе лекарственных

детектора, так и собственно хроматографов. В то же время в отдельных случаях эти ограничения могут способствовать высокой селективности анализа [1]. Материалы и методы исследования. Оборудование: Высокоэффективный жидкостный хроматограф Agilent 1100 c хроматографической колонкой с18 и диодно-матричным детектором.

Фосфатный буфер потребовался в связи с необходимостью перевести в одну форму ацетилсалициловую кислоту, которая может присутствовать в двух формах — протонированной и ионной. Фосфатный буфер с pH 2.3 был приготовлен по методике, описанной у F. Pragst — UV Spectra of Toxic Compounds...

Влияние жилого пространства на формирование социальных...

Электронная почта. Ваш вопрос. Нажимая кнопку «Отправить», вы даете согласие на обработку своих персональных данных.

Исследование фотокаталитической активности в реакции...

Исследована фотокаталитическая активность материалов Zn 1-x Ag x O под действием видимого света компактной лампы. Результаты показали, что 2 % Ag, легированный ZnO (Zn 0.98 Ag 0.02 O), обладал самой высокой фотокаталитической активностью для разложения метиленового синего и ализарина красного.

Использование Zn 0.98 Ag 0.02 O с массой m (г) для обработки метиленового синего 10 ppm. Регулировали рН раствора 8, помешивая в темноте в течение 30 минут. Эти растворы освещаются непосредственно компактной лампой при постоянном перемешивании в течение 120 минут. Определение содержания метиленового синего в растворе, полученном после центробежной фильтрации, фотометрическим методом при 665 нм.

Синтез мезоструктурированного материала nCr2O3/SBA-15 и его...

Цель настоящей работы — синтез мезоструктурированного материала nСr2О3/SBA-15 и их применение для адсорбции красного ализарина С. Экспериментальная часть. SBA-15 был синтезирован по методике [3]: добавили 2 г блок — сополимер Pluronic P123 в стеклянный мерный стакан (100 мл), затем 15 мл дистиллированной воды и 60 г раствора HCl 2М.

Материалы nCr2O3/SBA-15 сохраняют структуру и морфологию материала SBA-15, но присутствие Cr2O3 приводит к изменению свойств поверхности. С увеличением содержания Cr2O3 площадь поверхности материалов уменьшается, а диаметр пор повышается. Исследована адсорбционная способность для красного ализарина С материала nCr2O3/SBA-15.

Опыт применения бесполимерного самоотклоняющегося...

Эффективность солянокислотных обработок (СКО) зависит в первую очередь от глубины проникновения кислоты в пласт и от полноты растворения в кислотном растворе коллектора. В процессе обработки призабойной зоны пласта чистой соляной кислотой максимальное ее воздействие на породу происходит в прискважинной зоне.

По технологии двух компаний ООО «Группа компаний «Интехпромсервис» и ЗАО «НТЦ ГЕОТЕХНОКИН» предложен кислотный метод воздействия с применением бесполимерного самоотклоняющегося кислотного состава (БСКС). БСКС — это отклонитель на основе ПАВ и органической кислоты. При закачке в скважину БСКС имеет вязкость сопоставимую с вязкостью воды (1–3 мПа∙с). В пласте, по мере реагирования породы с органической кислотой, входящей в состав этого кислотного отклонителя, происходит набор вязкости до 200–250 мПа∙с и временная закупорка созданных...

Физико-химические свойства редкоземельных элементов...

Редкоземельные элементы, как материалы для исследования процессов по их легированию в другие материалы, являются малоизученными, и пока технологически сложными. Например, соединения эрбия из-за высоких окислительных свойств являются нестабильными, легко взаимодействуют с воздухом и водой, а в обычных технологических процессах изготовления оптических усилителей используются водные растворы хлорида эрбия.

В семействе лантаноидов элементы имеют два внешних электронных слоя, которые построены почти одинаково, а изменения претерпевает третий слой, число электронов которого возрастает от 18 до 32 (от лантана к лютецию). Так как химические свойства элементов связаны со структурой внешних электронных слоев, изменение числа электронов отражается на них довольно слабо.

Задать вопрос