Определение понятия искусственный нейрон, его истоки и принципы работы | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 28 декабря, печатный экземпляр отправим 1 января.

Опубликовать статью в журнале

Автор:

Рубрика: Информационные технологии

Опубликовано в Молодой учёный №4 (346) январь 2021 г.

Дата публикации: 23.01.2021

Статья просмотрена: 771 раз

Библиографическое описание:

Стукало, И. С. Определение понятия искусственный нейрон, его истоки и принципы работы / И. С. Стукало. — Текст : непосредственный // Молодой ученый. — 2021. — № 4 (346). — С. 15-17. — URL: https://moluch.ru/archive/346/77946/ (дата обращения: 16.12.2024).



В статье исследуют понятие искусственный нейрон, принципы работы и сравнения с биологическим нейроном.

Ключевые слова: искусственный нейрон, функции активации, искусственная нейронная сеть, нейрокомпьютеры.

В связи с цифровизацией современного общества и интеграции информационных технологий во все сферы современного общества, наблюдается лавинообразное нарастание данных, измеряемое зетабайтами. Данное явление именуется «информационный взрыв», где основные его аспекты были разобраны, к примеру, в работе Еремнина А. Л. [1].

Так как данных становится всё больше, а человек, по своей биологической природе, не способен обрабатывать столь большое количество информации, появляется направление Data Science, что конкретно переводится как Наука о данных, где используются математические модели и вычислительные мощности современных компьютеров для систематизации, классификации данных, которые нарастают с каждым днем.

В Data Science существует и отдельное направление, которое даёт возможность не только систематизировать данные, но также находить в них закономерности, функциональные зависимости, что позволяет находить такие закономерности в других данных или же предсказывать будущие события. Такое направление имеет название Machine Learning (далее ML), что переводится как Машинное Обучение. Отличительной особенностью ML является способностью обучать информационную модель, а не программировать её. Таким образом, машина полностью берет на себя построение зависимостей, функций, закономерностей, которые поступают в ней и самостоятельно определяет классификацию данных, без участия человека.

В ML существуют самые разные направления обучения машины, но нас будет интересовать крайне актуальная, эффективная и перспективная модель обучения — нейронные сети и его составной элемент — искусственный нейрон.

На сегодняшний день, нейронные сети являются одними из самых популярных направлений в Computer Science, они показывают себя в самых разных направлениях. К примеру, чат-боты, распознавание голоса, компьютерное зрение и т. д.

Целью нашего исследования является выяснения определения искусственного нейрона, его происхождения и принципов работы.

Откуда появчился термин искусственные нейронные сети?

Термин ИНС (искусственные нейронные сети) изначально был позаимствован из биологии, а именно из клетки нервной системы — нейрона. Термин «нейрон» для обозначения нервных клеток введён Г. В. Вальдейером в 1891 году [2]. Нейрон может находиться в двух состояниях — возбуждение и торможение. Нейрон (Рис. 1) следующие составные элементы: дендриты — короткие отростки, принимающие сигнал, аксоны — длинные отростки, передающие сигнал и тело нейрона — функциональный элемент, отвечающий за питание, управление ресурсами, деление и т. д.

Строение нейрона

Рис. 1. Строение нейрона

На конце аксона находится синапс — место контактов нейронов друг с другом, отличительная особенность синапса — однонаправленность, то есть синапс передает возбуждение(сигнал) от аксона к дендриту, только в одном направлении.

Любой тип нейрона имеет важное свойство — суммирование раздражений, то есть нейрон при помощи дендритов умеет принимать больше количество возбуждений и суммировать их в один сигнал, который передает через аксон следующему нейрону. Это и есть объяснение сложности взаимодействий частей организма и наших умственных возможностей.

Нейрокомпьютеры

Идея о создании нейрокомпьютеров появилась благодаря коннекционизму — раздел ИИ, связанным с созданием искусственного мозга и моделирование мышления человека при помощи компьютеров. С точки зрения коннекционизма (от англ. connection — связь), отдельные нейроны можно моделировать простыми автоматами, а вся сложность мозга определяется связями между нейронами [3]. Из этого утверждения выделяются следующие свойства:

– однородность системы (все элементы просты по строению);

– надежность системы (благодаря большому количеству связей);

– «голографичность», обеспечивающая сохранение свойств системы при разрушении ее части.

Важно отметить то, что компьютеры могут работать сбоев только следуя алгоритму, а суть нейрокомпьютера в том, что даже если данных не вполне достаточно или они неполны ил даже повреждены, компьютер выполняет программу все равно и связано с высоким уровнем параллелизма связей.

В [3] дано следующее определение ИНС: нейронная сеть — это распределенный параллельный процессор, состоящий из элементарных единиц обработки информации, накапливающих экспериментальные знания и предоставляющих их для последующей обработки.

Если мы рассматриваем с вами традиционный компьютер, то он состоит из четырех блоков: центральный процессор, память, устройство ввода и вывода. Причем центральный процессор представляет собой арифметико-логическое устройство и устройство управление.

В нейрокомпьютере арифметико-логическое устройство используется на базе искусственных нейронных сетей у которого имеется блок обучения (Рис. 2).

Схема нейрокомпютера

Рис. 2 Схема нейрокомпютера

Понятие искусственный нейрон

Искусственный нейрон — это узел искусственной нейронной сети, являющийся упрощённой моделью естественного нейрона [4].

На вход искусственной нейронной сети поступает набор данных, для каждого элемента данных имеется свой собственный вход. Каждый вход взвешивается, то есть умножается на некий коэффициент. Далее, каждое произведение суммируется и получается уровень активации нейрона. Блок, где находится сумма всех входных значений и весов соответствует телу нейрона (рис. 3).

Искусственный нейрон (перцептрон)

Рис. 3. Искусственный нейрон (перцептрон)

Искусственный нейрон представляет собой нелинейную функцию, которая получает определенный отрезок значений. Такая функция называется функция активации. К примеру, в биологических нейронных сетях функция активации обычно является абстракцией, представляющей скорость возбуждения потенциала действия в клетке [5]. Полученные данные обычно находится в пределах [-1;1] или [0;1], а для того, чтобы определить уровень активации нейрона, используют разные виды функций активации (рис. 4).

Основные варианты описания активационной функции

Рис. 4. Основные варианты описания активационной функции

Выводы

Проведя глубокий литературный и аналитический анализ, мы разобрали источники происхождения искусственных нейронных сетей, их принципы работы: входные данные, веса и функции активации. Также выяснили в каких пределах находятся определяются функции активации и каких видов они бывают.

Литература:

1. Еремин, А. Л. Ноогенез и теория интеллекта / А. Л. Еремин. — 4. — Краснодар: СовКуб, 2005. — 356 c. — Текст: непосредственный.

2. Азимов, А. Краткая история биологии / А. Азимов. — 2. — Москва : Рипол Классик, 2013. — 114 c. — Текст : непосредственный .

3. Хайкин, С. Нейронные сети / С. Хайкин. — 2. — Москва: Вильямс, 2006. — 1104 c. — Текст: непосредственный.

4. Комарцова, Л. Г. Нейрокомпьютеры / Л. Г. Комарцова, А. В. Максимов. — 1. — Москва: МГТУ им. Н. Э. Баумана, 2004. — 400 c. — Текст: непосредственный.

5. Cybenkot, G. Approximation by Superpositions of a Sigmoidal Function / G. Cybenkot. — Текст: непосредственный // Mathematics of Control, Signals, and Systems. — 1989. — № 2. — С. 303–314.

Основные термины (генерируются автоматически): искусственный нейрон, функция активации, искусственная нейронная сеть, принцип работы, арифметико-логическое устройство, классификация данных, современное общество, тело нейрона, уровень активации нейрона, центральный процессор.


Ключевые слова

нейрокомпьютеры, искусственная нейронная сеть, искусственный нейрон, функции активации

Похожие статьи

Формирование нейронной сети

В статье рассмотрены вопросы истории становления и развития нейроно-сетевых парадигм, формирование (создание) нейронной сети.

Нейронные сети и искусственный интеллект

Данная статья посвящена искусственному интеллекту и нейронным сетям. Использование ИИ в современном обществе вносят новые формы в совершенствование интеллектуальных систем в сфере информационных технологий, в науке, образовании, культуре. История осн...

Искусственные нейронные сети в военной сфере

В статье описаны разные архитектуры искусственных нейронных сетей, применение и общее введение в теорию искусственного интеллекта. Также в статье рассматривается применение в военной сфере.

От биологических процессов мозга к нейровычислителям

Работа посвящена вопросам анализа параметров систем искусственного интеллекта и изученных свойств естественных нейронов. Рассмотрены строение и структурные схемы естественного и искусственного нейронов. Особое внимание уделено принципам работы нейрос...

Исследования особенностей развития нейронных сетей в современном мире

Статья посвящена исследованию различных сфер применения нейронных сетей для решения прикладных задач.

Применение нейронных сетей в рабочих сферах

В статье рассматривается роль нейронных сетей в замене человека на рабочем месте, их применение в современном мире.

Интеллектуальные информационные системы

В статье автор рассмотрел ключевые концепции интеллектуальных информационных систем, их компоненты и области применения в различных отраслях

Разработка и обучение нейросетей

Краткий обзор нейронных сетей, методов их активации и обучения.

Сущность и усовершенствование концепции искусственного интеллекта

В данной статье описывается история, основы, цели и сущность концепции искусственного интеллекта (Artificial Thinking). Даны и проанализированы определения понятия искусственного интеллекта.

Искусственные нейронные сети. Нейросетевые технологии

В данной статье рассматриваются основные концепции и технологии, лежащие в основе искусственных нейронных сетей (ИНС). Исследование фокусируется на архитектуре нейронных сетей, их обучении и применении в различных областях, таких как распознавание об...

Похожие статьи

Формирование нейронной сети

В статье рассмотрены вопросы истории становления и развития нейроно-сетевых парадигм, формирование (создание) нейронной сети.

Нейронные сети и искусственный интеллект

Данная статья посвящена искусственному интеллекту и нейронным сетям. Использование ИИ в современном обществе вносят новые формы в совершенствование интеллектуальных систем в сфере информационных технологий, в науке, образовании, культуре. История осн...

Искусственные нейронные сети в военной сфере

В статье описаны разные архитектуры искусственных нейронных сетей, применение и общее введение в теорию искусственного интеллекта. Также в статье рассматривается применение в военной сфере.

От биологических процессов мозга к нейровычислителям

Работа посвящена вопросам анализа параметров систем искусственного интеллекта и изученных свойств естественных нейронов. Рассмотрены строение и структурные схемы естественного и искусственного нейронов. Особое внимание уделено принципам работы нейрос...

Исследования особенностей развития нейронных сетей в современном мире

Статья посвящена исследованию различных сфер применения нейронных сетей для решения прикладных задач.

Применение нейронных сетей в рабочих сферах

В статье рассматривается роль нейронных сетей в замене человека на рабочем месте, их применение в современном мире.

Интеллектуальные информационные системы

В статье автор рассмотрел ключевые концепции интеллектуальных информационных систем, их компоненты и области применения в различных отраслях

Разработка и обучение нейросетей

Краткий обзор нейронных сетей, методов их активации и обучения.

Сущность и усовершенствование концепции искусственного интеллекта

В данной статье описывается история, основы, цели и сущность концепции искусственного интеллекта (Artificial Thinking). Даны и проанализированы определения понятия искусственного интеллекта.

Искусственные нейронные сети. Нейросетевые технологии

В данной статье рассматриваются основные концепции и технологии, лежащие в основе искусственных нейронных сетей (ИНС). Исследование фокусируется на архитектуре нейронных сетей, их обучении и применении в различных областях, таких как распознавание об...

Задать вопрос