Наноструктурные материалы обретают в строительстве все большую востребованность, что обусловлено их уникальными свойствами (высокая износостойкость, особые электрофизические свойства, огнеупорность, снижения гигроскопичности древесины и др.). В данной работе проведен анализ теоретических источников, касающихся особенностей создания и использования нанодревесины как строительного материала нового поколения; проведен сравнительный анализ этих особенностей в проектировании зданий по сравнению с другими материалами. Автором обозначены возможные области их применения, чем определяется практический вклад в возможности решения поставленных задач при создании наиболее выгодного, экологически чистого, безопасного как для самого человека, так и для всей окружающей среды жилья.
Ключевые слова : нанодревесина, проектирование зданий, оптимизация, строительные материалы нового поколения.
Использование древесины в качестве строительного материала имеет многовековую историю. Тем не менее одним из наиболее интересных исследований в области создания новых стройматериалов является создание таковых на основе древесины, так как по сравнению с другими материалами древесина имеет ряд преимуществ, таких как возобновляемость, эстетичность, экологичность.
Цель работы: выявить и определить особенности применения нанодревесины в проектировании зданий и сооружений. Объектом исследования стали строительные материалы из нанодревесины.
Предметом являются специфические свойства и особенности строительных материалов из нанодревесины, используемых при строительстве зданий и сооружений.
Гипотеза исследования включает положение о том, что «процесс применения строительных материалов из нанодревесины в строительной отрасли будет успешным, если он будет опираться на научно-исследовательские разработки мирового сообщества и характеристики материалов, полученные путём опытно-экспериментального исследования, а также при наличии подготовленной нормативно-правовой базы и квалифицированных специалистов по работе с нано-материалами».
По результатам исследования проведена теоретическая оценка возможности использования строительных материалов из нанодревесины при проектировании и строительстве зданий и сооружений.
Можно выделить несколько основных областей применения пиломатериала на данный момент:
- при производстве строительно-монтажных работ (как вспомогательный материал);
- малоэтажное домостроение;
- кровельные настилы, обрешетка;
- несущие деревянные конструкции.
Учитывая все преимущества древесины, нужно указать на ряд существенных недостатков. К ним относятся анизотропия свойств материала, неоднородность свойств в одной древесной породе и даже в различных участках одного и того же ствола дерева, низкая биостойкость, способность поглощать и испарять влагу, что определяет нестабильность размеров, физико-механических, технологических и эксплуатационных свойств и пр. Поэтому среди основных направлений развития современной технологии древесины важное место занимают исследования способов ее химической, физической и механической обработки с целью улучшения основных значимых показателей.
Для улучшения свойств древесины в настоящее время разработаны и изучены несколько методов облагораживания:
- Сушка древесины
- Пропитка древесины
- Облагораживание древесины механическим давлением
- Облучение древесины
- Модифицирование древесины
Анализ результатов исследований, проведенных в области модифицирования древесины, показывает, что большинство исследованных методов и применяемых материалов либо не соответствуют повышенным экологическим и гигиеническим требованиям, предъявляемым к изделиям из древесины, либо экономически затратные. Поэтому основная задача исследований в настоящее время заключается в разработке наиболее технологичного и эффективного способа модификации и в поиске недорогих, малотоксичных модификаторов, легко проникающих в древесину и обеспечивающих повышение физико-механических свойств. Одним из наиболее интересных исследований в области создания новых стройматериалов является создание теплоизоляционных материалов на основе древесины.
Нанодревесина — это теплоизоляционный материал, изготовленный из мелких обрезанных древесных волокон, из которых удалены лигнин и большая часть гемицеллюлозы. Лишившись этих веществ, древесина становится хорошим изолятором и обладает ярко белым цветом. Благодаря своей белизне нанодревесина прекрасно отражает падающий на нее солнечный свет. Кроме того, унаследовав расположение в натуральной древесине, нановолокно состоит из выровненных целлюлозных нанофибрилл, что приводит к анизотропной теплопроводности с чрезвычайно низким значением ~ 0,03 Вт / м · К в поперечном направлении. Выровненные целлюлозные нанофибриллы также приводят к высокой механической прочности ~ 13 МПа, намного более прочной, чем у других материалов с низкой теплопроводностью. [1]
Нанодревесина состоит из иерархически выровненных массивов нанофибриллярной целлюлозы, полученной из натурального дерева.
Для получения нанодревесины Древесину разрезают вертикально по направлению ее роста (рисунок 1a). Деревянные микроканалы (то есть фибриллы с их полым просветом) естественным образом выровнены, как и нанофибриллы целлюлозы внутри клеточных стенок (рисунок 1b).
Исходный кусок дерева обрабатывается смесью NaOH (гидрооксиднатрия) и Na2SO3 (сульфат натрия), нагретой до температуры кипения, с последующей обработкой H2O2 (перекись водорода) (рисунок 1g шаг 1) для удаления лигнина и большей части гемицеллюлозы из натуральной древесины (рисунок 1с) [2,3].
Микроструктура древесины и иерархическое выравнивание хорошо сохраняются во время этого процесса, и образец впоследствии сушат вымораживанием (рисунок 1g шаг 2), чтобы сохранить нанопористую структуру делигнифицированной древесины. Потеря веса и изменение содержания лигнина для образца 12 мм × 30 мм × 120 мм в ходе химического процесса также показаны рисунок 1d.
Рис. 1 Процесс получения нанодревесины
Натуральная древесина может быть переработана в нанодревесину с хорошо сохранившейся структурой и с гораздо более низкой массовой плотностью (на 70 % ниже). Разработанный процесс может эффективно удалять лигнин и гемицеллюлозу внутри стенки фибрилл и между фибриллами, оставляя целлюлозу в качестве основного компонента в нанодревесине. Полученный в результате испытаний образец может иметь размер, сопоставимый с размером исходного образца, взятого для испытаний.
Образцы нано-древесины могут быть изготовлены в широком диапазоне размеров. Гибкое и легкое нановолокно может использоваться в качестве покрытия или насыпного слоя для теплоизоляции без значительного увеличения соответствующего углеродного следа. Как показано на рисунке 2, тонкие кусочки нанодревесины гибкие и их можно свернуть, не ломая. Нанодревесина компактна, надежна и пригодна для изготовления больших размеров.
Рис. 2. Образцы нанодревесины различных размеров [4].
Чтобы продемонстрировать возможности терморегулирования разработанной нанодревесины, на Кафедре материаловедения и инженерии, Мэрилендский университет, Колледж-Парк, MD 20742, США были проведены исследования и испытаны образцы как под проводящим, так и радиационным источником тепла и сравнили его с другими теплоизоляционными материалами, включая силикагель (изотропный), пенополистирол (изотропный) и древесину (анизотропная). [5,6]
Были применены три разные температуры, и результаты показывают, что нанодревесина дает самую низкую температуру вследствие низкой теплопроводности в поперечном направлении в сочетании с предпочтительным тепловым рассеянием в осевом направлении из-за его анизотропии.
На основе проанализированного материала можно утверждать, что нанодревесина:
– очень гибкий материал;
– легкий материал (плотность составляет порядка 0,130 г/см3);
– обладает высокой механической прочностью;
– по своим теплоизоляционным свойствам превосходит пенопласт и пенополистирол. (обладает чрезвычайно низкой теплопроводностью);
– подвержена биологическому разложению;
– безвредна для человека и окружающей среды;
– хорошо отражает солнечный свет,
– гипоаллергенна.
Внедрение нанотехнологий должно способствовать расширению спектра использования древесины. Если в настоящее время архитекторы и строители должны учитывать особенности материалов при проектировании или строительстве проектов, то в будущем, возможно, материалы перестанут ограничивать свободу специалистов. Уникальные характеристики, которые невозможно обеспечить традиционными методами производства, могли бы значительно упростить и ускорить время реализации различных строительных проектов, а также оптимизировать процесс их доставки на строительную площадку. Кроме того, за счет применения достижений нанонауки и нанотехнологии могут быть решены вопросы создания безопасной, комфортной среды жизни и решены накопившееся экологические проблемы.
На основе анализа свойств и перспектив использования нанодревесины можно прогнозировать развитие нанотехнологий настолько, что это приведет к появлению на строительном рынке новых видов материалов, характеристики которых сейчас даже трудно представить.
Литература:
- D. Renteria, S. Ramirez, H. Malekpour, B. Alonso, A. Centeno, A. Zurutuza, A. I. Cocemasov, D. L. Nika, A. A. Balandin, Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv. Funct. Mater. 25, 4664–4672 (2015) (Дата обращения: 20.10.2020).
- M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, L. Hu, Highly anisotropic, highly transparent wood composites. Adv. Mater. 28, 5181–5187 (2016). (Дата обращения: 20.10.2020).
- T. Li, M. Zhu, Z. Yang, J. Song, J. Dai, Y. Yao, W. Luo, G. Pastel, B. Yang, L. Hu, Wood composite as an energy efficient building material: Guided sunlight transmittance and effective thermal insulation. Adv. Energy Mater. 6, 1601122 (2016). (Дата обращения: 13.11.2020).
- Анизотропные, легкие, прочные и супер теплоизоляционные материалы с естественно выровненной целлюлозой. [Электронный ресурс]. — Режим доступа: https://advances.sciencemag.org/content/4/3/eaar3724 (Дата обращения: 05.12.2020).
- L. Hu, G. Zheng, J. Yao, N. Liu, B. Weil, M. Eskilsson, E. Karabulut, Z. Ruan, S. Fan, J. T. Bloking, M. D.McGehee, L. Wågberg, Y. Cui, Transparent and conductive paper from nanocellulose fibers. Energy Environ. Sci. 6, 513–518 (2013). (Дата обращения: 24.12.2020).
- Z.-Y. Wu, C. Li, H.-W. Liang, J.-F. Chen, S.-H. Yu, Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew. Chem. Int. Ed. Engl. 125, 2997–3001 (2013) (Дата обращения: 24.12.2020).