Озонирование топочного пространства печей нагрева | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 13 марта, печатный экземпляр отправим 17 марта.

Опубликовать статью в журнале

Автор:

Рубрика: Технические науки

Опубликовано в Молодой учёный №48 (338) ноябрь 2020 г.

Дата публикации: 26.11.2020

Статья просмотрена: 8 раз

Библиографическое описание:

Давыдов, П. С. Озонирование топочного пространства печей нагрева / П. С. Давыдов. — Текст : непосредственный // Молодой ученый. — 2020. — № 48 (338). — С. 35-37. — URL: https://moluch.ru/archive/338/75545/ (дата обращения: 05.03.2021).



Перекачка высоковязких и высокозастывающих нефтей и нефтепродуктов с подогревом является, в настоящее время, самым распространенным способом трубопроводного транспорта этих продуктов. На основе технических характеристик подогревателя нефти НУС-0,1 проведены сравнительные оценки энергозатрат для различных составов смеси топливо — окислитель: газ — воздух, газ — кислород, газ — воздух — с добавлением озона.Использование чистого кислорода или кислородно-воздушной смеси в путевых подогревателях не оправдано с экономической точки зрения. В тоже время, интенсификация процесса горения углеводородного топлива добавками озона в печах нагрева, является новым перспективным способом повышения эффективности эксплуатации топочных устройств. Для этого достаточно производительности серийно выпускаемых озонаторов.

Ключевые слова: перекачка высоковязких нефтей, подогреватели нефти, интенсификация горения, кислород, озон, озонатор, энергопотребление нагревателя, эффективность топочного устройства.

В целях реализации технологии «горячей» перекачки нефти трубопроводным транспортом, разработано множество подогревателей, отличающихся различными техническими характеристиками [1].

Одним из путей повышения эффективности эксплуатации топочных устройств, наряду с совершенствованием конструкций топочных камер и горелок, является реализация современных методов интенсификации горения в топочных камерах. Доказано, что наряду с кислородом, окислителем в топочных процессах может выступать озон, в качестве небольшой добавки [2].

На основе устьевого нагревателя НУС-0,1 проведем сравнительные оценки энергозатрат для различных составов смеси топливо-окислитель: газ — воздух, газ — кислород, газ — воздух — с добавлением озона. Нагреватель НУС-0,1 применяется для нагрева нефти и нефтяной эмульсии на устьях скважин при их транспортировании в системах внутрипромыслового сбора [3]. В расчетах используются следующие технические характеристики НУС-0,1: полезная тепловая мощность — 100 кВт; расход природного газа — 13,7 м 3 /ч. Считаем, что работа НУС-0,1 обеспечивается вентиляторной горелкой. Вентиляторные горелки характеризуются высоким КПД и имеют более широкий диапазон настроек, в отличие от инжекционных.

Для определенности будем рассматривать следующий состав природного газа: метан (CH 4 ) — 94 %; этан (C 2 H 6 ) –2 %; бутан (C 4 H 10 )– 1 %; пропана (C 3 H 8 ) — 2 %, а также азота — 0,5 % и 0,5 % углекислого газа. При этом в процессе горения азот и углекислый газ участия не принимают. Если углеводородные составляющие природного газа обозначить как C m H n , то уравнение химической реакции окисления, можно представить в виде [4]:

C m H n + (m + n/4) O 2 = m CO 2 + (n/2) H 2 O (1)

Система уравнений (1) отражает процесс полного горения природного газа, когда в продуктах сгорания выходящих в атмосферу горючие вещества отсутствуют. При этом углерод и водород соединяются вместе и образуют углекислый газ и пары воды. В соответствии с выбранным составом природного газа и техническими характеристиками НУС-0,1, общая потребность в кислороде, как окислителя реакций горения углеводородных составляющих природного газа, определяется, согласно (1), значением в 28,9755 м 3 за 1 час работы топочного устройства. Поскольку содержание кислорода в воздухе не превышает 21 %, то для полного сгорания природного газа в течение часа потребуется 137,979 м 3 воздуха. Полный объем газо-воздушной смеси составит V 0 =151,679 м 3 /ч.

Интенсификация процесса горения углеводородного топлива добавками озона в печах нагрева, является перспективным способом повышения эффективности эксплуатации топочных устройств.

Озон O 3 состоит только из атомов кислорода и представляет собой аллотропную модификацию кислорода, подобно тому, как алмаз и графит являются аллотропными модификациями углерода. Своей высокой активностью озон обязан, прежде всего, атомарному кислороду, который он легко отдает при диссоциации молекулы в химической реакции [5].

Последние исследования показывают, что устойчивый положительный эффект интенсификации горения достигается при концентрации озона 90÷200 мг/м 3 . При окислении природного газа в озоно-воздушной среде увеличивается выход двуокиси углерода CO 2 на 20 ÷ 25 % и снижается содержание угарного газа CO на 35 % [6].

Для озонирования топочного пространства печей нагрева не требуется использование мощных промышленных озонаторов. В тоже время, необходимо определить характеристики озонатора достаточные для обеспечения озонирования топочного пространства нагревателя устьевого НУС-0,1 с точки зрения повышения эффективности его работы. Для этого воспользуемся техническими характеристиками современных озонаторов [7,8] и сопоставим их выходные характеристики с потребностями необходимыми для эффективного функционирования нагревателя устьевого НУС-0,1. Результаты представлены на рисунке 1.

Видно, что потребляемая мощность в зависимости от производительности озонатора имеет нелинейную зависимость и резко растет, начиная с производительности по озону более 30 г/ч. Кроме этого, уровень потребляемой мощности озонаторов P оз различен в зависимости от производителя.

Исходя из экспериментальных данных по необходимой концентрации озона в озоно - воздушной смеси печи нагрева, в расчетах принималось среднее значение концентрации ρ = 150 мг/м 3 . Для расхода природного газа в объеме 13,7 м 3 /ч, подаваемого в топочное пространство нагревателя устьевого НУС-0,1 и потребного расхода воздуха в объеме 137,979 м 3 /ч, полный объем газо воздушной смеси составит V 0 =151,679 м 3 /ч. Таким образом, потребная масса озона, необходимая для обеспечения концентрации 150 мг/м 3 , составит:

m = ρ V 0 = 150 10– 3 *151,679 ≈ 23 г/ч (2)

Производительность озонаторов

Рис. 1. Производительность озонаторов

Как видно из рисунка 1, требуемой производительностью по выработке озона в 23 г/ч обладает озонатор с потребляемой мощностью P оз не более 0,3 ÷ 0,4 кВт. Учитывая общее энергопотребление нагревателя, включая работу вентиляторной горелки, находим общую потребляемую мощность P общ ≈ 0,65 ÷ 0,75 кВт, то есть не более 0,65 ÷ 0,75 % от полезной тепловой мощности нагревателя P=100 кВт. Если исходить из данных по удельным энергозатратам на получение 1 кг озона 13÷16 кВт ч [9], то затраты энергии на получение требуемого количества озона m=23 г за 1 час работы озонатора составят: (13 ÷ 16) *23/1000≈0,3÷ 0,37 кВт ч, что согласуется с предыдущими расчетами.

Таким образом, за счет использования озоно - воздушной смеси процесс горения природного газа можно значительно интенсифицировать: добиться более полного использования топлива и снизить выброс вредных веществ в атмосферу. Для этого достаточно производительности серийно выпускаемых отечественных озонаторов с энергозатратами не более 0,3 % ÷ 0,4 % от полезной тепловой мощности нагревателя устьевого НУС-0,1.

Литература:

1. Коршак, А.А., Шаммазов, A. M. Основы нефтегазового дела. Учебник для ВУЗов, — Уфа: ООО «ДизайнПолиграфСервис», 2002. — 544 с.

2. Нормов, Д.А., Федоренко, Е.А., Драгин, В. А. Повышение эффективности сжигания печного топлива в малых котельных электроозонированием: монография/ Д. А. Нормов, Е. А. Федоренко, В. А. Драгин — Краснодар: КСЭИ. 2011. — 140 с.

3. Нагреватель устьевой НУС-0,1 [Электронный ресурс]. — Режим доступа: http://montagenergo.com/main-podogrev.html, свободный (Дата обращения: 10.09.2020 г.).

4. Хзмалян, Д.М., Каган, Я. А. Теория горения и топочные устройства. Учеб.пособие для студентов ВУЗов, — М.: «Энергия», 1976.- 488с.

5. Филиппов, Ю. В. Электросинтез озона / Ю. В. Филиппов, В. А. Вобликова, В. И. Пантелеев. — М.: Изд-во Моск. ун-та, 1987. — 237 с.

6. Андреев, С.А., Петрова, Е. А. Оценка энергозатрат на озонирование топочного пространства водогрейных котлов. / С. А. Андреев, Е. А. Петрова // Электроинтенсификация и автоматизация сельского хозяйства, Вестник № 2–2015. — С.33–36.

7. Озонаторное оборудование. Компания Эконау [Электронный ресурс]. — Режим доступа: https://www.ekonow.ru/catalog/ozonatory-vozdukha/promyshlennyj-ozonator-ozonovaya-pushka-oz-a5.html, свободный (Дата обращения: 12.09.2020 г.).

8. Озонаторное оборудование. НПО «ЭКОЗОН» [Электронный ресурс]. — Режим доступа: https://www.ecozon.pro/, свободный (Дата обращения: 10.09.2020 г.).

9. Самойлович, В. Г. Аргументы «за» и «против» использования воздуха или кислорода для промышленного производства озона / В. Г. Самойлович, Л. Ю. Абрамович // Первая всероссийская конференция «Озон и другие экологически чистые окислители»: материалы конф. — М., 2005. — С. 144–154.

Основные термины (генерируются автоматически): природный газ, печ нагрева, полезная тепловая мощность, вентиляторная горелка, перспективный способ повышения эффективности эксплуатации, различный состав смеси, топочное устройство, трубопроводный транспорт, углеводородное топливо, углекислый газ.


Задать вопрос