В статье представлен анализ использования активных фильтров гармоник в электроэнергетических системах.
Ключевые слова: активный фильтр, качество электроэнергии, высшие гармоники.
В начале 80-х гармоники в электрических сетях впервые были признаны как серьезная проблема во всем мире. При этом удельный вес нелинейной нагрузки рос лавинообразно. Как следствие, сегодня спектральный состав напряжения электросетей значительно обогатился [1].
Качество электрической энергии — это совокупность ее свойств, при которых электрооборудование, приборы и аппараты способны нормально функционировать, выполнять заложенные в них функции.
В процессе эксплуатации электрооборудования происходит его взаимодействие с окружающей средой.
Это взаимодействие является обоюдным: не только среда может воздействовать на электрические аппараты и оборудование, но и последние также могут воздействовать на среду. Взаимодействие среды с электрооборудованием определяется посредством электромагнитных помех. Таким образом, электроэнергетическая система — это такая электромагнитная среда, в которой электромагнитные помехи создаются и воздействуют на электрические приборы, являющиеся, в свою очередь, источниками электромагнитных помех. Поэтому качество электрической энергии в системе электроснабжения характеризуют по уровню электромагнитных помех, называемых показателями качества электроэнергии [2].
В связи с наблюдающимся в настоящее время широким внедрением во всех отраслях хозяйства автоматизированных электроприводов (АЭП), созданных на основе силовых полупроводниковых преобразователей постоянного и переменного тока, возрастает объем генерации ими в питающую сеть неактивных составляющих мощности. Это, в свою очередь, приводит к дополнительным потерям электроэнергии в распределительных электрических сетях (РЭС) [3].
Применение нелинейных нагрузок, таких как управляемые и неуправляемые выпрямители, циклоконверторы и др. приводит к искажению формы кривой напряжения сети. Это, в свою очередь, ведёт к различным негативным последствиям [4], таким как рост потерь в электрических машинах и аппаратах, увеличение интенсивности старения изоляции, нарушение электромагнитной совместимости.
Современные комплексы радиоэлектронной аппаратуры (РЭА) работают в сложной электромагнитной обстановке, обусловленной в том числе необеспеченностью отдельных показателей качества электроэнергии. Это вызвано ростом удельных характеристик устройств, имеющих низкий коэффициент мощности и работающих по резко переменным графикам нагрузки. Особо осложняет электромагнитную обстановку работа электроприемников, генерирующих высшие гармонические составляющие (ВГС), с уровнем электромагнитной совместимости, выходящим за рамки диапазонов, определенных ГОСТ 32144–2013.
Перечисленное приводит к неконтролируемым изменениям величины и формы напряжения в точках присоединения потребителей. Ухудшение качества электроэнергии напрямую влияет на снижение срока службы РЭА, является наиболее вероятной причиной ее отказов и выхода из строя, приводит к увеличению потерь энергии во всех элементах системы электроснабжения и, соответственно, влечет увеличение расхода топливных ресурсов [5].
В последние годы в нашей стране доля однофазной нагрузки в электрических сетях неуклонно растет, что приводит к увеличению нагрузки на однофазные сети. Кроме того, в настоящее время большая часть однофазной нагрузки имеет нелинейный характер [6].
Разработка и внедрение технологий интеллектуальных электрических сетей в системах электроснабжения промышленных предприятий РФ позволят создавать интеллектуальные системы электроснабжения в любой отрасли промышленности.
При этом новые интеллектуальные системы электроснабжения должны быть приспособлены к особенностям технологических потребителей промышленных предприятий, и при возникновении нарушений установленного режима электроснабжения эффективно их выявлять и устранять. Основной причиной нарушений установленного режима электроснабжения промышленных предприятий являются электромагнитные помехи различной природы, вызывающие несоответствие уровня качества электрической энергии и нарушение электромагнитной совместимости электрооборудования.
Основной тенденцией в электрических сетях современных промышленных предприятий является интенсивное распространение нелинейной нагрузки в виде различного типа преобразователей частоты систем регулируемого электропривода технологического оборудования [7].
Использование силовой электроники и микроэлектронных устройств, несмотря на повышение производительности труда, вызывает проблемы качества электроэнергии. Мощные единичные нелинейные нагрузки, такие как выпрямители, инверторы, а также множество маломощных нелинейных потребителей могут потреблять значительное количество гармоник тока различного спектра. В результате падения напряжения на полных сопротивлениях электрической сети гармонические составляющие тока вызывают искажения напряжения в точках общего присоединения нагрузки, в которых нормируется предельный уровень гармоник по ГОСТ 32144–2013. Превышение этого уровня вызывает ряд проблем, связанных с потерями в трансформаторах, ложными срабатываниями релейной защиты. Высшие гармоники отрицательно влияют на работу другой электроники и электроприборов [8].
Результатом воздействия гармоник на систему электроснабжения и оборудование потребителей является:
– увеличение потерь во вращающихся машинах, трансформаторах, линиях электропередачи;
– ускоренное старение изоляции электрооборудования;
– ложные срабатывания и выход из строя устройств релейной защиты, автоматики, телемеханики и связи;
– проблемы, связанные с реактивной мощностью и резонансными явлениями;
– снижение номинальных параметров оборудования;
– возрастание недоучета электроэнергии (погрешность счетчиков может достигать 50–60 % показаний) [1,9].
При этом следует учесть, что проблемы с качеством электроэнергии, возникающие на стороне потребителя, практически всегда обусловлены действиями самого потребителя на его собственном участке ответственности, и лишь в редких случаях они привносятся из сети электроснабжения. Все эти последствия являются нежелательными, а чаще всего недопустимыми как для предприятий электроснабжения, так и для потребителей. Таким образом, задача повышения качества электроэнергии на сегодняшний день является актуальной.
Решения для ослабления воздействия гармоник можно разделить на три группы: адаптация электроустановок, применение специальных устройств для обеспечения питания; использование фильтров. В настоящее время появилась возможность использовать новейшие и наиболее перспективные устройства коррекции — активные фильтры электроэнергии (АФЭ), дающие возможность эффективно улучшать качество электрической энергии в распределительных сетях.
Принцип действия активного фильтра гармоник основан на непрерывном анализе гармонического состава нелинейной нагрузки и генерировании в распределительную сеть таких же гармоник, но с противоположной фазой. В результате высшие гармонические составляющие нейтрализуются в точке подключения фильтра, не распространяются от нелинейной нагрузки в сеть.
АФГ могут решить одновременно четыре задачи:
– симметрирование напряжений (опосредованно через симметрирование токов) сети;
– связанное с этим снижение практически до 0 тока нейтрали;
– подавление токовых гармоник;
– компенсация реактивной мощности (повышение cosφ).
В работах [1,10,11] представлены различные типы активных фильтров.
Рис. 1. Схема последовательного активного фильтра
Рис. 2. Блок-схема активного фильтра параллельного типа
Рис. 3. Подключение активного фильтра к электрической сети
Рис. 4. Схема параллельного активного фильтра
В условиях происходящего во всём мире удорожания электроэнергии стремительно развиваются средства её сбережения. Одним из таких наиболее эффективных средств является активный фильтр. Активные фильтры обеспечивают эффективное снижение уровня гармоник в сети, а также компенсацию реактивной мощности, существенно уменьшая расходы на электроэнергию.
Литература:
- Чередников А. В. Аспекты использования активных фильтров в схемах электроснабжения / А. В. Чередников //В сборнике: Молодежь и научно-технический прогресс Сборник докладов VII международной научно-практическая конференции студентов, аспирантов и молодых ученых. В 3-х томах. 2014. С. 109–112.
- Горюнов В. Н. Активный фильтр как техническое средство обеспечения качества электроэнергии / В. Н. Горюнов, А. Г. Лютаревич, И. Н. Четверик // Омский научный вестник. 2008. № 1 (64). С. 78–80.
- Волков, А. В. Совершенствование энергосберегающей системы электропитания для автоматизированных электроприводов на основе активного фильтра / А. В. Волков, В. П. Метельский, В. А. Волков // Электротехнические и компьютерные системы. 2011. № 3 (79). С. 388–391.
- Поднебенная, С. К. Силовой параллельный активный фильтр с повышенной эффективностью / С. К. Поднебенная, В. В. Бурлака, С. В. Гулаков // Электротехника. 2013. № 6. С. 15–20.
- Замула К. В. Активный фильтр гармоник как средство повышения качества электрической энергии / К. В. Замула, Ю. В. Соколов, А. В. Карманов // Энергия единой сети. 2018. № 2 (37). С. 22–32.
- Ильясов, Д. М. Увеличение качества электрической энергии посредством параллельного активного фильтра электроэнергии / Д. М. Ильясов // Символ науки. 2019. № 1. С. 12–16.
- Абрамович, Б. Н. Повышение качества электрической энергии с помощью параллельного активного фильтра в системах электроснабжения промышленных предприятий / Б. Н. Абрамович, Ю. А. Сычев // Электричество. 2012. № 3. С. 7–11.
- Колесников, Г. Ю. Возможность применения активных фильтров гармоник в распределительных сетях 0,4 кВ / Г. Ю. Колесников, Н. Н. Щикунов // Вестник Северо-Кавказского федерального университета. 2019. № 4 (73). С. 7–13.
- Рогозина Д. А. Исследования режимов работы активного фильтра гармоник / Д. А. Рогозина, Е. А. Пугачева, С. П. Сикорский // В сборнике: УЧЕНЫЕ ОМСКА — РЕГИОНУ Материалы III Региональной научно-технической конференции. Под общей редакцией Л. О. Штриплинга. 2018. С. 42–52.
- Апарин, В. А. Моделирование последовательного бестрансформаторного активного фильтра в различных режимах работы / В. А. Апарин, А. А. Шевцов // Вектор науки Тольяттинского государственного университета. 2013. № 1 (23). С. 91–96.
- Савельев, Н. В. Моделирование работы активного фильтра гармоник в электрической сети под нагрузкой с нелинейной вольт-амперной характеристикой / Н. В. Савельев, В. В. Рожков // Вестник Московского энергетического института. Вестник МЭИ. 2016. № 3. С. 41–49.