Отправьте статью сегодня! Журнал выйдет 12 июля, печатный экземпляр отправим 16 июля
Опубликовать статью

Молодой учёный

Необходимость расчета элементов стальных конструкций согласно EN 1993–1-9

Архитектура, дизайн и строительство
03.03.2020
165
Поделиться
Библиографическое описание
Ермакова, А. А. Необходимость расчета элементов стальных конструкций согласно EN 1993–1-9 / А. А. Ермакова, И. И. Уразов. — Текст : непосредственный // Молодой ученый. — 2020. — № 10 (300). — С. 120-123. — URL: https://moluch.ru/archive/300/67841/.


В статье авторы пытаются определить необходимость расчета элементов стальных конструкций согласно EN 1993–1-9.

Ключевые слова: сопротивление усталости, EN 1993–1-9, напряжения, цикл нагружения.

Природа усталости

Материалы, находящиеся под воздействием циклических переменных нагрузок, со временем изменяют свои механические свойства. Высокий процент разрушений элементов конструкций происходит из-за усталости (ошибок на стадии проектирования или производства).

Согласно [1], на определённой стадии нагружения материала циклическими переменными нагрузками начинаются необратимые явления снижения сопротивления материала разрушению, характеризуемые как усталостное повреждение. Сначала в структурных составляющих материала и по границам их сопряжения образуются микротрещины, которые на дальнейших стадиях перерастают в макротрещины либо приводят к окончательному разрушению элемента конструкции или образца для механических испытаний.

Кривые усталости

Наиболее распространенной формой представления данных об усталости является кривая S-N (кривая Велера), где диапазон циклических напряжений (S) изображен в зависимости от количества циклов до отказа (N). Кривая усталости (кривая S-N) в логарифмических (lgS, lgN) координатах представлена на Рис. 1 [2, Рисунок 11.9].

C:\Users\ermak\Desktop\менеджмент\Снимок3.PNG

Рис. 1. Основные параметры цикла нагружения

S-N кривые получают путем лабораторных испытаний образцов. Согласно [3], наиболее часто используемыми схемами нагружения при испытаниях на усталость являются консольный изгиб с вращением, чистый изгиб с вращением и осевое пульсирующее растяжение или растяжение-сжатие, а наиболее распространенный цикл нагружения — синусоидальный (коэффициент ассиметрии цикла ).

Сопротивление усталости стальных конструкций

Проведем оценку усталостной прочности в соответствии с EN 1993–1-9 [4]. Для проверки усталостной прочности необходимо сравнить размахи напряжений цикла с пределами выносливости.

Сопротивление усталости обеспечено, если выполняются условия:

и [4, Формула (8.2)]

[4, Формула (8.3)]

Где:

; — эквивалентный размах напряжений цикла постоянной амплитуды на базе 2 млн. циклов, Н/мм2;

; — допускаемое значение предела выносливости при 2 млн. () циклах, Н/мм2;

— частный коэффициент безопасности для эквивалентных размахов напряжений циклов постоянной амплитуды (принимаем равным 1.35 согласно EN 1993–1-9 [4, Таблица 3.1] в запас как для больших последствий разрушения при методе оценки безопасного ресурса);

— частный коэффициент безопасности для предела выносливости ; (принимаем для подкрановых путей в соответствии с EN 1993–6 [4, п. 9.2.(1)].

Категория проверяемых элементов определяется в соответствии с EN 1993–1-9 [4] и обозначается числом, равным значению предела выносливости и , Н/мм2, определенному на базе 2 млн. циклов нагружения [4, п. 6.1(1)].

Пределы выносливости в зависимости от категории элементов и количества циклов определяются по кривым, представленным на Рис. 2 [4, п. 7.1(2)]:

7_1

Рис. 2. Пределы выносливости соответственно нормальных и касательных напряжений , , Н/мм2 [4]

Когда число циклов при постоянном размахе напряжений цикла

(см. Рис. 2), пределы выносливости имеют наиболее высокие значения.

Предел выносливости нормальных напряжений [4, п. 7.1(2)]:

При количестве циклов предел выносливости принимается равным пределу выносливости постоянной амплитуды [4, п. 7.1(2)]:

Предел выносливости касательных напряжений [4, п. 7.1(2)]:

При количестве циклов (до предела повреждаемости) значения пределов выносливости становятся ниже.

Предел выносливости нормальных напряжений [4, п. 7.1(2)]:

При количестве циклов предел выносливости определяется как предел повреждаемости [4, п. 7.1(2)]:

Предел выносливости касательных напряжений определяется так же, как и при количестве циклов (см. выше).

При количестве циклов предел выносливости определяется как предел повреждаемости [4, п. 7.1(2)]:

При количестве циклов и до ∞ значения пределов выносливости не зависят от количества циклов, определяются как пределы повреждаемости элементов и имеют самые минимальные значения.

Предел выносливости нормальных напряжений (см. Рис. 2):

Предел выносливости касательных напряжений (см. Рис. 2):

Определение расчетной долговечности

В конструкциях, удовлетворяющих условиям прочности, размах нормальных напряжений не может быть больше предела текучести , а размах касательных напряжений не может быть выше .

Примем эти значения для стали S355 как наибольшие возможные размахи напряжений, то есть: , .

Для того, чтобы сопротивление усталости было обеспечено, должны выполняться условия [4, Формула (8.2), Формула (8.3)], см. выше.

Для определения минимального числа циклов примем ;

, следовательно, условия [4, Формула (8.2), Формула (8.3)] примут вид:

и

При принятых выше коэффициентах ; и максимально возможных размахах напряжений, пределы выносливости должны быть выше:

Поскольку при малом количестве циклов

, а (см. выше):

;

Для обеспечения таких пределов выносливости, количество циклов не должно быть больше:

;

Для самой низкой категории элементов , следовательно:

;

Сопротивление усталости обеспечено при очень малом количестве циклов нагружения . Следовательно, проверку по условиям

[4, Формула (8.2), Формула (8.3)] необходимо производить в большинстве случаев.

Литература:

1. С. В. Серенсен. Значение УСТАЛОСТЬ МАТЕРИАЛОВ в Большой советской энциклопедии, БСЭ [Электронный ресурс] // Slovar.cc: cловари, энциклопедии и справочники, 2010–2020. URL: https://slovar.cc/enc/bse/2052262.html (дата обращения: 01.03.2020)

2. Steel designers’ manual / the Steel Construction Institute; edited by Buick Davison, Graham W. Owens. 7th ed. — UK, 2012.

3. Терентьев В. Ф., Кораблева С. А. Усталость металлов. М.: Наука, 2015. 479 с.

4. ТКП EN 1993–1-9–2009 Еврокод 3. Проектирование стальных конструкций. Часть 1–9. Усталостная прочность / Министерство архитектуры и строительства Республики Беларусь — Минск, 2010.

5. ТКП EN 1993–6-2009 Еврокод 3. Проектирование стальных конструкций. Часть 6. Подкрановые пути / Министерство архитектуры и строительства Республики Беларусь — Минск, 2010.

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
сопротивление усталости
EN 1993–1-9
напряжения
цикл нагружения
Молодой учёный №10 (300) март 2020 г.
Скачать часть журнала с этой статьей(стр. 120-123):
Часть 2 (стр. 81-161)
Расположение в файле:
стр. 81стр. 120-123стр. 161

Молодой учёный