Влияние термопаровой обработки на кислотные и каталитические свойства пентасилов в термокаталитическом превращении газоконденсата | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 7 марта, печатный экземпляр отправим 11 марта.

Опубликовать статью в журнале

Автор:

Рубрика: Химия

Опубликовано в Молодой учёный №2 (292) январь 2020 г.

Дата публикации: 13.01.2020

Статья просмотрена: 2 раза

Библиографическое описание:

Дадашева С. С. Влияние термопаровой обработки на кислотные и каталитические свойства пентасилов в термокаталитическом превращении газоконденсата // Молодой ученый. — 2020. — №2. — С. 10-12. — URL https://moluch.ru/archive/292/66201/ (дата обращения: 22.02.2020).



Изучено влияние условий термопаровой обработки (ТПО) на каталитические свойства пентасилов в процессе превращения газоконденсата в олефиновые углеводороды С2 С4..Показано, условия ТПО пентасилов существенно влияет на распределение кислотных центров, в результате чего происходит уменьшение силы и концентрации сильных кислотных центров, что повышает выход низших алкенов С2 –С4 при термокаталитическом превращении газоконденсата. Оптимальным условием ТПО для цеолитов при котором достигается высокий выход алкенов С2 –С4 (45,2–45,8 масс. %) является 550°С при продолжительности 10 ч.

Ключевые слова: газоконденсат, высококремнеземный цеолит типа ЦВМ, термопаровая обработка, олефины С2 С4.

В последнее время наблюдается нарастающее внимание к исследованиям в области каталитических технологий получения низших олефинов С2 –С4 путём превращения низкооктановых бензиновых фракций и газоконденсатов в присутствии высококремнезёмных цеолитов типа пентасилов [1–4]. В работах [5–10] показано, что активность и селективность пентасилов в превращениях углеводородного сырья обусловлено их кислотными и молекулярно-ситовыми свойствами. Одним из возможных способов регулирования кислотных и молекулярно-ситовых свойств цеолитов с целью повышения их селективности по олефинам С2 С4 является сочетание термической и термопаровой обработки цеолитсодержащих катализаторов.

В связи с этим целью настоящей работы явилось изучение влияния условий термопаровой обработки на каталитические свойства пентасилов в процессе превращения газоконденсата в олефиновые углеводороды С2 С4.

Экспериментальная часть

Катализаторы готовили из высококремнеземного цеолита ЦВМ с мольным отношением SiO2/Al2O3=33, который путём ионного обмена переводили в NH4-форму по методике, описанной ранее [11,12]. Термическим разложением NH4-формы при 500°С в течение 4 ч получали Н-форму цеолита. Для исследования влияния термопаровой обработки (ТПО) на кислотные и каталитические свойства образцы цеолитов НЦВМ были подвергнуты в течение различного времени предварительной обработке паром при 550°С (2, 5 и 10ч) и 700°С (2 и 5ч).

Термокаталитическое превращение газоконденсата исследовали на установке проточного типа с кварцевым реактором со стационарным слоем катализатора. Каталитические опыты проводили при температуре 550–650°С с 5 мл катализатора с объёмной скоростью подачи сырья 2 ч-1. В качестве исходного сырья использовали газовый конденсат состава, % масс.: парафиновые углеводороды — 76,6; нафтеновые — 19,5; ароматические — 3,9. Продукты реакции анализировали хроматографическим методом. Условия анализа описаны в работе.

Результаты и их обсуждение

Из таблицы видно, что ТПО образцов приводит к снижению суммарной концентрации и силы кислотных центров Н — пентасилов, причем, в первую очередь наблюдается снижение концентрации сильнокислотных центров (табл.1.)

На образцах пентасилов, подвергнутых ТПО, наблюдается общая тенденция к уменьшению конверсии газоконденсата и снижение образования ароматических углеводородов, что связано со снижением концентрации сильных кислотных центров.

На образцах НЦВМ и Н-ультрасил подвергнутых ТПО от 2 до 10 ч происходит повышение выхода алкенов С2 –С4 с 42,4 до 45,2 % (табл.2.). Повышение температуры обработки Н-пентасилов паром до 700°С в течение 2 ч приводит к увеличению выхода алкенов, однако наблюдается снижение конверсии газоконденсата.

Таблица 1

Кислотные характеристики цеолитов подвергнутых ТПО

Цеолит, условия обработки

ТМАХ °С

Концентрация кислотных центров, мкмольг-1

Т

Т

С

С

Н-ЦВМ

198

418

628

542

1170

Н-Ультрасил

195

408

625

538

1163

ТПО, НЦВМ,550°С,2ч

186

302

364

267

631

ТПО, НЦВМ,550°С,5ч

180

297

189

486

ТПО, НЦВМ,550°С,10ч

171

202

87

289

Н-ультрасил,550°С,5ч

177

292

182

474

Н-ультрасил,550°С,10ч

168

194

74

268

ТПО, НЦВМ,700°С,2ч

167

172

64

236

ТПО, НЦВМ,700°С,5ч

173

97

56

153

Н-ультрасил,700°С,5ч

174

103

49

152

Т и Т температуры максимумов пиков для форм Ⅰ и Ⅱ; С и С концентрации кислотных центров для форм Ⅰ и Ⅱ.

Выход алкенов С2 –С4 на НЦВМ составляет 44,6 при выходе газа равном 70,4 %. Увеличение продолжительности ТПО при 700°С до 5 ч существенно снижает выход газа и алкенов С2 –С4. При этом содержание алкенов С2 –С4 на НЦВМ и Н-ультрасиле снижается до 62,2–63,5 %, а выход алкенов С2 –С4 до 31,1–32,8 масс. % (табл.2.).

Таблица 2

Влияние ТПО Н-пентасилов на состав продуктов превращения газоконденсата (Температура реакции 650°С, V=2ч-1, t=1час)

Цеолит, условия ТПО

Выход продуктов

на пропущенное сырье,%

Содержание алкенов вгазе,%

Содержание АРУ вЖП*,%

Газа

ЖПХ

Кокс

Алканов С24

Алкенов С24

АРУС6 и выше

ТПО, НЦВМ,550°С,2ч

76,8

19,0

4,2

34,4

42,4

13,1

55,2

68,9

ТПО, НЦВМ,550°С,5ч

74,1

22,8

3,1

29,8

44,3

11,8

59,7

51,8

ТПО, НЦВМ,550°С,10ч

72,3

26,0

1,7

27,1

45,2

9,4

62,5

36,1

Н-ультрасил,550°С,10ч

73,2

25,3

1,5

27,4

45,8

9,1

62,6

35,9

ТПО, НЦВМ,700°С,2ч

70,4

28,5

1,1

25,8

44,6

8,7

63,3

30,5

ТПО, НЦВМ,700°С,5ч

63,3

36,0

0,7

30,5

32,8

6,2

51,8

17,2

Н-ультрасил,700°С,5ч

62,2

37,3

0,5

31,1

31,1

5,9

50,0

15,8

*ЖП жидкие продукты

Таким образом, оптимальным условием ТПО для цеолитов является 550°С при продолжительности 10 ч. При этом выход алкенов С2 –С4 на НЦВМ и Н-ультрасиле составляет 45,2 и 45,8 масс. % соответственно.

Очевидно, что в результате ТПО обработки при 550°С в течение 2–10 ч происходит значительное снижение концентрации кислотных центров, особенно сильнокислотных, соответствующим бренстедовским кислотным центрам. Напротив, слабокислотные центры, соответствующие льюисовским кислотным центрам, являются более стабильными к воздействию ТПО и не разрушаются даже при проведении ТПО при 700°С в течение 5ч и более существенно происходит разрушение сильнокислотных бренстедовских центров и увеличение соотношения L/B, что и приводит к увеличению селективности по низшим алкенам С2 –С4. Образование новых льюисовских кислотных центров и существенное снижение силы бренстедовских кислотных центров приводит к снижению скорости ароматизации и коксообразования, которые интенсивно протекают на сильнокислотных бренстедовских кислотных центрах. Таким образом, условия ТПО пентасилов существенно влияет на распределение кислотных центров, в результате чего происходит уменьшение силы и концентрации сильных кислотных центров, что повышает выход низших алкенов С2 –С4 при термокаталитическом превращении газоконденсата.

Литература:

  1. Крейнина Г. П., Избякова Л. А., Адельсон С. В. Влияние качества сырья на показатели каталитического пиролиза.// Химия и технология топлив и масел. — 1987. –№ 7. — С. 15–18
  2. Адельсон С. В., Крейнина Г. П.., Липкинд Б. А. Каталический пиролиз прямогонного бензина в присутствии KVO3 на носителях.// Нефтепереработка и нефтехимия. — 1980. — № 4. — С. 32–34.
  3. Адельсон С. В., Жагфаров Ф. Г., Черных С. П. О стабильности работы катализаторов пиролиза // Химия и технология топлив и масел. — 1991. –№ 2. — С. 23–25
  4. Ерофеев В. И., Адяева Л. В.. Рябов Ю. В. Пиролиз прямогонных бензинов на цеолитах типа ZSM-5, модифицированных катионами щелочноземельных металлов // Прикладная химия. — 2001. — Т. 74. — Вып. 2. — С. 231–234.
  5. Ерофеев В. И., Адяева Л. В., Кухаренко О. А. Влияние высокотемпературной обработки пентасилов на их кислотные и каталитические свойства в процессе превращения прямогонных бензинов // Прикладная химия. — 2001. — Т. 74. — Вып. 11. — С. 1846–1849.
  6. Ерофеев В. И., Адяева Л. В. Превращение прямогонных бензинов, модифицированных индием. Прикладная химия. — 2003. — Т. 76. — Вып. 7. — С. 1083–1088
  7. Морозов А. Ю., Каратун О. Н., Ельцова А. С. Получение низкомолекулярных олефинов в процессе каталитического пиролиза бензиновой фракции // Нефтепереработка и нефтехимия. -2003. — № 1. — С.15–18
  8. Мамедов С. Э., Аминбеков А. Ф. Каталитический пиролиз н-гексана на высококремнеземных цеолитах различной структуры // Нефтепереработка и нефтехимия. -2006. — № 8. — С.24–25
  9. Цыганова Е. И., Шекунова В. М., Александров Ю. А., Филофеев С. В., Лелеков В. Е. Влияние металлов восьмой группы на каталитический пиролиз низшых олефинов // Журнал общей химии. — 2015. –Вып. 85. — № 1. — С. 21–29
  10. Лапидус А. Л., Дергачев А. А. Превращение низкомолекулярных алифатических углеводородов на цеолитных катализаторах // Газохимия. — 2008. — № 6. С. 16–26
  11. Мамедов С.Э, Ахмедова Н.Ф, Дадашева С. С. Превращение углеводородного сырья на модифицированных цеолитных катализаторах // «Молодой учёный». — № 6 (41), — 2012, с.83–85
  12. Мамедов С. Э., Ахмедова Н. Ф., Дадашева С. С., Мирзалиева С. Э., Ахмедов Э. И. Термокаталитическое превращение н-гептана и газоконденсата на модифицированных моно- и бицеолитных катализаторах.// Нефтегазохимия. — 2018. — № 1, с. 33–36.
Основные термины (генерируются автоматически): центр, термопаровая обработка, термокаталитическое превращение газоконденсата, уменьшение силы, выход, снижение концентрации, процесс превращения газоконденсата, оптимальное условие, выход газа, цеолит типа.


Похожие статьи

Превращение углеводородного сырья на модифицированных...

Термокаталитическое превращение н-гептана и газоконденсата исследовали на установке проточного типа с кварцевым реактором со стационарным слоем катализатора. Каталитические опыты проводили при температуре 550-650°С с 10 мл катализатора (фракция 1  1.5 мм) с...

Превращение углеводородных газов на модифицированных...

Основными продуктами превращения смеси легких парафиновых углеводородов (метан — 0

Превращение природного газа и метанола на цеолитах типа... Катализатор.

Концентрация кислотных центров (мкмоль/г). повышению конверсии природного газа и выхода АРУ(с 30,5...

Превращение природного газа на высококремнеземном цеолите...

Изучено совместное промотирующее влияние редкоземельных элементов (La, Gd, Lu) на каталитические свойства ВК-цеолита типа ЦВМ в процессе конверсии природного газа в ароматические углеводороды.

Изомеризация газоконденсатных парафинов С5-С6 на...

Результаты превращения газоконденсата на Pt-содержащем бицеолитном катализаторе представлены в табл.1. Видно, что в присутствии катализатора октановое число (0Ч) газоконденсата повышается с 69,0 до 85,2 пунктов по исследовательскому методу.

Превращение природного газа и метанола на цеолитах типа...

Дальнейшее увеличение концентрации циркония в катализаторе приводит к снижению выхода АРУ до 30.58 мас. %

Превращение природного газа на высококремнеземном цеолите... С ростом температуры процесса конверсия природного газа и селективность по ароматическим...

Закономерности превращения этанола на пентасилах

Установлено, что распределение продуктов превращение этанола зависит от мольного отношения SiO2/Al2O3 в цеолите. С ростом SiO2/Al2O3 в цеолите происходит увеличение выхода этилена и пропилена, а также снижение селективности по крекингу и ароматизации.

К вопросу определения давления начала конденсации...

В статье предложен способ определения давления однофазного состояния пластовых флюидов, правильное определение которого приводит к предотвращению потерь жидкости в пласте и в призабойной зоне скважины и, тем самым, обеспечивает высокие коэффициенты извлечения...

Низкотемпературная сепарация природного газа для извлечения...

На газоконденсатных месторождениях РФ для подготовки газа к дальнему транспорту применяется метод низкотемпературной сепарации (НТС). Метод состоит в охлаждении потока газа за счет дросселирования избыточного давления и механического разделения...

Синтез экологически чистых ароматических углеводородов...

Превращение природного газа и метанола на цеолитах типа... Ключевые слова: природный газ, метанол, цеолит типа пентасил, цирконий, молибден и хром. С ростом температуры процесса на всех образцах наблюдается увеличение степени превращения исходного сырья и выхода...

Эффект модифицирования Н-пентасила фосфором в реакции...

Ключевые слова: высококремнеземный цеолит типа пентасила, этанол, бензол, алкилирование, модифицирование и фосфор.

Целью настоящей работы явилось исследование влияния концентрации фосфора на активность и селективность цеолита типа ZSM-5 в процессе...

Похожие статьи

Превращение углеводородного сырья на модифицированных...

Термокаталитическое превращение н-гептана и газоконденсата исследовали на установке проточного типа с кварцевым реактором со стационарным слоем катализатора. Каталитические опыты проводили при температуре 550-650°С с 10 мл катализатора (фракция 1  1.5 мм) с...

Превращение углеводородных газов на модифицированных...

Основными продуктами превращения смеси легких парафиновых углеводородов (метан — 0

Превращение природного газа и метанола на цеолитах типа... Катализатор.

Концентрация кислотных центров (мкмоль/г). повышению конверсии природного газа и выхода АРУ(с 30,5...

Превращение природного газа на высококремнеземном цеолите...

Изучено совместное промотирующее влияние редкоземельных элементов (La, Gd, Lu) на каталитические свойства ВК-цеолита типа ЦВМ в процессе конверсии природного газа в ароматические углеводороды.

Изомеризация газоконденсатных парафинов С5-С6 на...

Результаты превращения газоконденсата на Pt-содержащем бицеолитном катализаторе представлены в табл.1. Видно, что в присутствии катализатора октановое число (0Ч) газоконденсата повышается с 69,0 до 85,2 пунктов по исследовательскому методу.

Превращение природного газа и метанола на цеолитах типа...

Дальнейшее увеличение концентрации циркония в катализаторе приводит к снижению выхода АРУ до 30.58 мас. %

Превращение природного газа на высококремнеземном цеолите... С ростом температуры процесса конверсия природного газа и селективность по ароматическим...

Закономерности превращения этанола на пентасилах

Установлено, что распределение продуктов превращение этанола зависит от мольного отношения SiO2/Al2O3 в цеолите. С ростом SiO2/Al2O3 в цеолите происходит увеличение выхода этилена и пропилена, а также снижение селективности по крекингу и ароматизации.

К вопросу определения давления начала конденсации...

В статье предложен способ определения давления однофазного состояния пластовых флюидов, правильное определение которого приводит к предотвращению потерь жидкости в пласте и в призабойной зоне скважины и, тем самым, обеспечивает высокие коэффициенты извлечения...

Низкотемпературная сепарация природного газа для извлечения...

На газоконденсатных месторождениях РФ для подготовки газа к дальнему транспорту применяется метод низкотемпературной сепарации (НТС). Метод состоит в охлаждении потока газа за счет дросселирования избыточного давления и механического разделения...

Синтез экологически чистых ароматических углеводородов...

Превращение природного газа и метанола на цеолитах типа... Ключевые слова: природный газ, метанол, цеолит типа пентасил, цирконий, молибден и хром. С ростом температуры процесса на всех образцах наблюдается увеличение степени превращения исходного сырья и выхода...

Эффект модифицирования Н-пентасила фосфором в реакции...

Ключевые слова: высококремнеземный цеолит типа пентасила, этанол, бензол, алкилирование, модифицирование и фосфор.

Целью настоящей работы явилось исследование влияния концентрации фосфора на активность и селективность цеолита типа ZSM-5 в процессе...

Задать вопрос