Отправьте статью сегодня! Журнал выйдет 2 августа, печатный экземпляр отправим 6 августа
Опубликовать статью

Молодой учёный

Эффективность применения частотно регулируемого электропривода для сетевых насосов теплоэлектроцентралей

Технические науки
27.09.2019
1529
Поделиться
Библиографическое описание
Саксонов, А. С. Эффективность применения частотно регулируемого электропривода для сетевых насосов теплоэлектроцентралей / А. С. Саксонов. — Текст : непосредственный // Молодой ученый. — 2019. — № 39 (277). — С. 201-203. — URL: https://moluch.ru/archive/277/62047/.


В данной статье рассмотрен вопрос внедрения частотно-регулируемого электропривода для сетевых насосов теплоэлектроцентралей с целью повышения энергоэффективности работы системы собственных нужд теплоэлектроцентралей.

Ключевые слова: теплоэлектроцентраль, сетевой насос, частотно-регулируемый электропривод, повышение энергоэффективности.

Сетевые насосы (СН) перекачивают теплоноситель от сетевых подогревателей ТЭЦ до тепловых пунктов потребителей.

В течение года тепловая нагрузка изменяется от летнего минимума состоящего только из потребления горячей воды до зимнего максимума, состоящего из отопительной нагрузки, нагрузки на вентиляцию и потребления горячей воды. Объем подачи теплоносителя сетевыми насосами сильно разнится в зимний период и в летний. Для поддержания давления в тепловой сети на нужном уровне применяется регулирование потока теплоносителя. Для регулирования в течение года отпуска теплоносителя в тепловую сеть можно использовать несколько способов:

− Регулирование потока горячей воды при помощи ручных и электромеханических задвижек;

− Регулирование потока теплоносителя с применением частотно-регулируемого электропривода.

Регулирование с применением ручных и электромеханических задвижек является наиболее распространенным на теплоэлектроцентралях в настоящее время. При таком регулировании количество отпускаемого в тепловую сеть теплоносителя изменяется путем варьирования угла открытия задвижки.

При применении частотно-регулируемого привода (ЧРП) количество отпускаемого в тепловую сеть теплоносителя изменяется путем варьирования частоты вращения ротора электродвигателя СН. Применение ЧРП гораздо более выгодно, по сравнению с применением задвижек, т. к. помимо регулирования потока теплоносителя достигается также экономия электроэнергии, подводимой к электродвигателю. Еще одним преимуществом перед большинством задвижек является автоматическое регулирование частоты вращения электродвигателя преобразователем частоты [1].

Выполним расчет, показывающий целесообразность применения ЧРП на СН в направлении энергоэффективности на основе сведений предоставленных в [2].

Исходные данные для расчета приведены в таблице 1.

Таблица 1

Исходные данные для расчета СН

Параметр

Значение

Тип СН

СЭ-2500

Тип электродвигателя СН

ДАЗО4–560УК-10

Мощность электродвигателя СН, кВт

630

Номинальная производительность СН, т/ч

2500

Номинальный момент электродвигателя СН, Н•м

2070

Расход сетевой воды на отопление Gо, т/ч

730

Расход сетевой воды на вентиляцию Gв, т/ч

88

Расход сетевой воды на горячее водоснабжение Gгвз, т/ч

158

Расчетный расход воды в неотопительный период Gгвлmax, т/ч

242

Рассчитаем производительность СН в зимний период по формуле (1):

GСНЗ=1,1·(GО+GВ+1,4·GГВЗ) (1)

GСНЗ=1,1·(730+88+1,4·158)=1143 т/ч

Рассчитаем производительность СН в летний период по формуле (2):

GСНЛ=1,1·GГВЛmax (2)

GСНЛ=1,1·242=266 т/ч

При регулировании потока теплоносителя с применением задвижек насос работает с номинальной мощностью, с номинальным числом оборотов, соответственно, мощность, потребляемая насосом, всегда на одном уровне.

При наличии ЧРП, как сказано выше, регулировка осуществляется изменением числа оборотов ротора электродвигателя. Известно, что производительность механизма прямо пропорционально зависит от мощности, которую имеет электродвигатель. Мощность электродвигателя прямо пропорционально зависит от числа оборотов электродвигателя. А это значит, что для расчета частоты вращения соответствующей фактической производительности можно воспользоваться следующим соотношением (3):

= (3)

Выражаем n2 формулой (4):

n2= (4)

n2==1371 об/мин

Теперь определим расходуемую мощность электродвигателем насоса при частотном регулировании в зимний период по формуле (5):

Pэд= (5)

Pэд==297 кВт

В летний период мощность электродвигателя при частотном регулировании будет составлять:

Pэд==57 кВт

Из расчёта можно увидеть, что применение ЧРП на электродвигателях СН сказывается положительно, этому содействуют факторы такие как: возможность плавной регулировки отдачи теплоносителя в тепловую сеть, зависимость мощности электродвигателя от производительности насоса. Это приводит к экономии электроэнергии, повышению энергоэффективности системы собственных нужд ТЭЦ [3], т. к. процент выработанной электроэнергии приходящийся на собственные нужды уменьшается. Электродвигатель СН потребляет мощность равную 47 % от номинальной для СН в зимнее время года, тем самым мощность расходуемая на собственные нужды ТЭЦ уменьшается.

Литература:

  1. Арсентьев О. В., Душечкин Д. К., Тюрин М. Д. Частотно-регулируемый электропривод центробежных насосов перекачивающей станции // Вестник Ангарского государственного технического университета. — 2016. — № 10. — С. 17–21.
  2. Соколов Е. Я. Теплофикация и тепловые сети. — М.: Энергоиздат, 2009. — 472 с.
  3. Иванов К. В. Частотно-регулируемый электропривод насосного оборудования: способы повышения устойчивости при нарушениях электроснабжения (на примере Приуфимской ТЭЦ) // Студент и аграрная наука. Материалы IX студенческой научной конференции. — Уфа: Башкирский государственный аграрный университет, 2015. — С. 218–222.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
теплоэлектроцентраль
сетевой насос
частотно-регулируемый электропривод
повышение энергоэффективности
Молодой учёный №39 (277) сентябрь 2019 г.
Скачать часть журнала с этой статьей(стр. 201-203):
Часть 3 (стр. 135-219)
Расположение в файле:
стр. 135стр. 201-203стр. 219

Молодой учёный