Об индексе дефекта и спектре квазидифференциального оператора четвертого порядка | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 27 апреля, печатный экземпляр отправим 1 мая.

Опубликовать статью в журнале

Автор:

Рубрика: Математика

Опубликовано в Молодой учёный №4 (27) апрель 2011 г.

Статья просмотрена: 102 раза

Библиографическое описание:

Филиппенко, В. И. Об индексе дефекта и спектре квазидифференциального оператора четвертого порядка / В. И. Филиппенко. — Текст : непосредственный // Молодой ученый. — 2011. — № 4 (27). — Т. 1. — С. 19-24. — URL: https://moluch.ru/archive/27/2903/ (дата обращения: 19.04.2024).

При разделении переменных в динамической краевой задаче, описывающей малые колебания неоднородного стержня, жестко закрепленного на правом конце и подвергаемого действию следящей силы на правом конце, возникает спектральная задача четвертого порядка. Спектральные свойства таких задач, вообще говоря, могут отличаться от спектральных свойств аналогичных задач второго порядка. Например, спектр задачи о малых колебаниях стержня в отличие от задачи о малых колебаниях струны может не быть простым. Поэтому результаты, полученные для задач Штурма – Лиувилля, нельзя автоматически применять к задачам четвертого порядка.

Пусть – формально самосопряженная квазидифференциальная операция четвертого порядка:,

где, - мнимая единица. Операция задана на полуоси . В дальнейшем при некоторых предположениях о поведении коэффициентов квазидифференциальной операции найдем асимптотику решений дифференциального уравнения

, (1)

когда . Установим индекс дефекта минимального симметричного оператора , порожденного операцией в гильбертовом пространстве ; изучим природу спектра самосопряженного расширения оператора .

1. Следуя Ф. С. Рофе-Бекетову, определим квазипроизводные следующим образом:

.

При этом .

Теперь сведем уравнение (1) к системе дифференциальных уравнений первого порядка. Из определения квазипроизводых следует, что

.

Если положить то уравнение (1) будет эквивалентно системе квазидифференциальных уравнений

(2)

где

.

Будем считать, что для всех а, функции суммируемы в интервале , т.е. их модули медленно меняются на бесконечности. Эти условия на коэффициенты выражения , позволяют получить асимптотические формулы для решений уравнения (1) и их квазипроизводных по схеме, предложенной в начале 50-х годов прошлого века И. М. Рапопортом [1] (см. также [2, 3]).

Представим матрицу в виде суммы двух матриц ­и , имеющих вид

, ,

и найдем собственное значение матрицы , т.е. корни характеристического уравнения , где - единичная матрица размерности . Раскрывая этот определитель, получим уравнение

. (3)

Решая это уравнение, найдем собственные значения матрицы :

,

Значения корней выбираются так, чтобы при положительных значениях функции и принимали вещественные, а функции и – чисто мнимые значения.

Найдем матрицу такую, что

(4)

где - диагональная матрица, диагональными элементами которой являются собственные значения матрицы . Равенство (4) означает, что столбцы матрицы являются собственными векторами матрицы , отвечающими собственным значениям . Следовательно, матрица имеет вид

.

Элементы матрицы можно найти, решая уравнение .

Перепишем это уравнение в виде

Следовательно, можно считать, что

Таким образом, матрица имеет вид

.

Теперь обычным способом находим обратную матрицу

.

Так как в рассматриваемом случае выполняются все условия теоремы о преобразовании системы линейных квазидифференциальных уравнений первого порядка к – диагональному виду (см., например, [1]), то подстановка приводит систему (2) к виду

(5)

где элементы матрицы суммируемы по переменной в интервале , а элементы матрицы являются непрерывными функциями переменной . Если все функции в интервале сохраняют знак то система (5) имеет четыре линейно независимых решения вида

,

где

Преобразование переводит решения - диагональной системы (5) в некоторые решения системы (2). Учитывая вид матрицы , находим, что решения уравнения (1) и их квазипроизводные удовлетворяют, если , следующим асимптотическим формулам:

(6)

.

2. Найдем индекс дефекта минимального оператора , порожденного дифференциальной операцией в гильбертовом пространстве (см., например [4]). Из суммируемости функций и на промежутке следует непрерывность функций и , а также существование пределов и .

Тогда, если , то из уравнения (3) получим уравнение

, (7)

где . Выберем невещественное число так, чтобы все корни уравнения (7) имели различные вещественные части. Расположим их по убыванию вещественных частей . Так как уравнение (7) содержит только четные степени , то одновременно с его корнем будет также ; поэтому можно считать, что вещественные части корней - положительные, а вещественные части корней - отрицательны. Поскольку функция непрерывна и то, начиная с некоторого значения , вещественные части становятся положительными, а вещественные части функций становятся отрицательными. Отсюда следует, что функции не принадлежат пространству , а функции принадлежит пространству .

Докажем, что при и

. (8)

Действительно,

.

Так как в рассматриваемом случае , то из последнего соотношения следует формула (8).

Линейная комбинация вида не принадлежит пространству , если хотя бы один из коэффициентов отличен от нуля. Если – первый из коэффициентов отличный от нуля, то, устремляя , получим .

Поскольку , то и . Следовательно, , тогда . Это значит, что индекс дефекта оператора есть (2,2). Таким образом, справедлива следующая теорема.

Теорема 1. Если для некоторого функции - принадлежат и для любых , то уравнение (1) имеет четыре линейно независимых решения , которые удовлетворяют, установленным выше, формулам (6). Индекс дефекта оператора есть (2,2).

Пусть - самосопряженное расширение оператора L0. Так как индекс дефекта оператора L0 есть (2,2), то самосопряженный оператор определяется системой краевых условий в точке , которые, следуя А.В. Штраусу, можно представить в виде

, (9)

где - некоторая прямоугольная матрица, состоящая из двух строк и четырех столбцов, такая что , где

.

Пусть. Найдем собственные значения самосопряженного оператора , расположенные на отрицательной полуоси

Соответствующая собственная функция должна принадлежать и поэтому, при соответствующей нумерации , является линейной комбинацией функций и , т. е. .

Кроме того, собственная функция должна удовлетворять условию (9), которое теперь можно представить в виде

. (10)

Эта система имеет нетривиальное решение относительно и тогда и только тогда, когда обращается в нуль определитель

.

Пусть - нуль этого определителя. Тогда соответствующая собственная функция оператора представима формулой

,

в которой содержатся коэффициенты , являющиеся нетривиальными решениями системы (10) соответствующими . Кратность собственного значения определяется рангом матрицы определителя в точке . То, что отрицательные , не совпавшие ни с одним из собственных значений оператора , не принадлежат спектру этого оператора, следует из ограниченности при этих l резольвенты оператора , где - тождественный оператор.

Пусть - симметрический квазидифференциальный оператор с индексом дефекта , а - его самосопряженное расширение. Если при некотором вещественном значении спектрального параметра его дефектное число оператора меньше , то принадлежит спектру самосопряженного оператора . Если, кроме того, не является собственным значением оператора , то принадлежит непрерывной части спектра оператора . Пусть теперь . В этом случае , а функции , не принадлежат . Более того, никакая нетривиальная линейная комбинация не принадлежит

Действительно, если, то . Если , то функция имеет вид .

Предположим, что тогда получим

и поэтому функция не принадлежит пространству. В этом случае, когда , требуемое соотношение можно получить, используя ограниченность сверху при любом фиксированном функции .

Теорема 2. Если коэффициенты дифференциального выражения удовлетворяют условиям: , то непрерывная часть спектра самосопряженного оператора заполняет всю положительную полуось , а на отрицательной полуоси может находиться только дискретная часть спектра самосопряженного оператора .

Замечание. В случае, когда коэффициенты тождественно равны нулю, получаем хорошо известную ситуацию суммируемых коэффициентов.


Литература:
  1. Рапопорт И.М. О некоторых асимптотических методах в теории дифференциальных уравнений. – Киев: Изд-во АН УССР, 1954.
  2. Everitt W. N. Fourth order singular differential equations // Math. Ann. – 1963. – V. 149. – P. 230 – 340.
  3. Наймарк М. А. Линейные дифференциальные операторы. – М.: Наука, 1969. – 526 с.
  4. Плеснер А.И. Спектральная теория линейных операторов. – М.: Наука, 1965. – 624 с.
Основные термины (генерируются автоматически): самосопряженный оператор, уравнение, функция, вид, индекс дефекта, индекс дефекта оператора, собственное значение матрицы, элемент матрицы, гильбертово пространство, отрицательная полуось.


Похожие статьи

Спектральные меры самосопряженных расширений...

любой, положительная матричная мера, самосопряженный оператор, пространство, гильбертово пространство, спектральная матрица, унитарная эквивалентность, числовая ось, функция, оператор.

Описание множества собственных значений одной блочной...

Блочно-операторные матрицы — это матрицы, элементы которых являются линейными операторами, определенными между банаховым или гильбертовым пространством. Такие операторы возникают в статистической физике, теории твердого тела...

Условия существования собственных значений одной...

Блочно-операторная матрица — это матрица, элементы которой являются линейными операторами в банаховом или гильбертовом пространствах [1]. Одним из специальных классов блочно-операторных матриц являются Гамильтонианы системы с несохраняющимся...

Числовой образ модели Фридрихса с одномерным возмущением

Спектральная теория самосопряженных операторов в гильбертовом пространстве, Изд.

Основные термины (генерируются автоматически): линейный оператор, числовой образ, собственное значение оператора, оператор, гильбертово пространство, числовой образ...

О кратности непрерывного спектра дифференциального...

любой, собственное значение матрицы, симметрический оператор, сегмент, самосопряженное расширение оператора, оператор, обобщенная резольвента, непрерывная часть спектра оператора, гильбертово пространство...

Спектральные разложения минимального... | Молодой ученый

Квазидифференциальная операция определяет минимальный замкнутый симметрический оператор в гильбертовом пространстве .

Спектральные меры самосопряженных расширений симметрического дифференциального оператора. Об индексе дефекта и спектре...

Нули определителя Фредгольма, соответствующие одной...

гильбертово пространство, оператор, собственное значение оператора, существенный спектр оператора, существенный спектр, операторная матрица, ограниченный самосопряженный оператор.

О числе собственных значений одной операторной матрицы...

Обозначим Рассмотрим ограниченную самосопряженную блочно операторную матрицу , действующую в гильбертовом пространстве и задающуюся как. , где матричные элементы определяются по формулам.

Существенный спектр модельного трехчастичного оператора...

При этих предположениях оператор является ограниченным и самосопряженным в гильбертовом пространстве .

имеет место хотя бы для одного и. , ; , . Видно, что при каждом фиксированном функция монотонно убывает на полуосях и . Поэтому при всех и верно .

Похожие статьи

Спектральные меры самосопряженных расширений...

любой, положительная матричная мера, самосопряженный оператор, пространство, гильбертово пространство, спектральная матрица, унитарная эквивалентность, числовая ось, функция, оператор.

Описание множества собственных значений одной блочной...

Блочно-операторные матрицы — это матрицы, элементы которых являются линейными операторами, определенными между банаховым или гильбертовым пространством. Такие операторы возникают в статистической физике, теории твердого тела...

Условия существования собственных значений одной...

Блочно-операторная матрица — это матрица, элементы которой являются линейными операторами в банаховом или гильбертовом пространствах [1]. Одним из специальных классов блочно-операторных матриц являются Гамильтонианы системы с несохраняющимся...

Числовой образ модели Фридрихса с одномерным возмущением

Спектральная теория самосопряженных операторов в гильбертовом пространстве, Изд.

Основные термины (генерируются автоматически): линейный оператор, числовой образ, собственное значение оператора, оператор, гильбертово пространство, числовой образ...

О кратности непрерывного спектра дифференциального...

любой, собственное значение матрицы, симметрический оператор, сегмент, самосопряженное расширение оператора, оператор, обобщенная резольвента, непрерывная часть спектра оператора, гильбертово пространство...

Спектральные разложения минимального... | Молодой ученый

Квазидифференциальная операция определяет минимальный замкнутый симметрический оператор в гильбертовом пространстве .

Спектральные меры самосопряженных расширений симметрического дифференциального оператора. Об индексе дефекта и спектре...

Нули определителя Фредгольма, соответствующие одной...

гильбертово пространство, оператор, собственное значение оператора, существенный спектр оператора, существенный спектр, операторная матрица, ограниченный самосопряженный оператор.

О числе собственных значений одной операторной матрицы...

Обозначим Рассмотрим ограниченную самосопряженную блочно операторную матрицу , действующую в гильбертовом пространстве и задающуюся как. , где матричные элементы определяются по формулам.

Существенный спектр модельного трехчастичного оператора...

При этих предположениях оператор является ограниченным и самосопряженным в гильбертовом пространстве .

имеет место хотя бы для одного и. , ; , . Видно, что при каждом фиксированном функция монотонно убывает на полуосях и . Поэтому при всех и верно .

Задать вопрос