Использование стекловолокна как современный метод укрепления железобетонных колонн | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 4 мая, печатный экземпляр отправим 8 мая.

Опубликовать статью в журнале

Автор:

Рубрика: Технические науки

Опубликовано в Молодой учёный №10 (248) март 2019 г.

Дата публикации: 06.03.2019

Статья просмотрена: 653 раза

Библиографическое описание:

Мансур, Хасан. Использование стекловолокна как современный метод укрепления железобетонных колонн / Хасан Мансур. — Текст : непосредственный // Молодой ученый. — 2019. — № 10 (248). — С. 7-12. — URL: https://moluch.ru/archive/248/57022/ (дата обращения: 23.04.2024).



Ключевые слова: FRP, усиление, стекловолокно.

Усиление колонн представляет собой инженерную проблему, которая наряду с другими техническими проблемами имеет конкретное решение для каждой из задач. Каждое из этих решений имеет свои преимущества и недостатки, например, это касается области применения: укрепление колонн металлическими углами, усиление колонн из стали, укрепление колонн твердыми стальными элементами, бетонная сталь и т.д. Во всех приведенных методах укрепления железобетонных конструкций отмечается главный недостаток: количество элементов значительно возрастает, а это неизбежно приводит к уменьшению внутренних областей и искажению архитектурного дизайна. По мнению автора, данные методы армирования требуют значительного количества квалифицированной рабочей силы, а также применения тяжелого и дорогостоящего оборудования. Кроме того, элементы металлоконструкций имеют определенную длину, поэтому недостатки могут появляться в фокальных точках. В строительной технологии имеется альтернативный вариант укрепления железобетонных конструкций: использование армированных волокном полимеров (Fiber Reinforced Polymer – FRP). Плюсы этого метода в том, что данный метод лишен недостатков традиционных методов, и при этом обладает рядом преимуществ.

Использование FRP для усиления железобетонных колонн обеспечивает их эффективную поддержку, при этом размер, форма и вес армированного элемента не изменяются. Армированные волокном полимеры FRP являются одним из лучших способов укрепления объектов археологических и исторических конструкций. Высокая коррозионная стойкость делает применение FRP подходящим для морской и прибрежной среды.

Данное волокно производится в виде полотна, скрученного в длинные рулоны. Это помогает избежать формирования соединительных зон. Простота установки создает низкую стоимость и подходит для укрепления уже существующих структур, обеспечивая минимальное негативное воздействие на эти структуры.

Кроме того, FRP —современный материал, создающий качественную альтернативу железу. Одно из основных преимуществ FRP заключается в том, что это легкий, более дешевый материал, чем железо, он значительно проще в установке и более устойчив к коррозии. FRP успешно используется на протяжении последних нескольких лет и положительно зарекомендовал себя. Сейчас проводятся обширные исследования по испытанию FRP при различных нагрузках и для преодоления технических препятствий, связанных с его использованием.

Армированные волокном полимеры являются по сути промышленными волокнами с высокой прочностью, смешанными с полимерами.

Сам полимер не обладает высокой несущей способностью, но он играет важную роль в синтезе волокон, защищает их от воздействия химических веществ и ультрафиолетового излучения, от механических повреждений. Опыт показывает, что армированная конструкция выдерживает внешние нагрузки и придает материалу FRP высокую прочность.

Характеристики материала FRP варьируются в зависимости от типа используемого волокна (углерод — стекло), количества волокна в связующем материале и от многих других факторов.

На протяжении последних десятилетий FRP часто использовались в космических и военных областях благодаря их высокой прочности при относительно малом весе.

Однако, до сих пор армированные волокном полимеры не были доступны в качестве строительного материала из-за высокой стоимости.

Стекловолокно используется в бетоне в трех основных формах, как отдельные нити (рис.1), непрерывный рулон (рис.2) или сетка (рис.3).

Рис. 1

Рис. 2

Рис.3

Существуют различные формы сетей в зависимости от ориентации волокон, как показано на Рис.4.

Рис. 4.

Более широко волокна используются в инженерных гражданских конструкциях, при этом используются материалы, которые сделаны из стекла (GFRP), углерода (CFRP) и полимеров, поддерживаемых арамидными волокнами (AFRP) (см. Рис. 5.)

Рис. 5

Волокно представляет собой гетерогенный материал, поэтому его механические свойства сильно различаются в зависимости от типа волокна, используемого связующего материала, количества волокон и их угла в связующем материале.

В таблице 1 показаны механические свойства некоторых из наиболее распространенных типов волокон по отношению к продольной оси волокон в терминах коэффициента упругости (E-modulus), предельная деформация (Ultimate Strain) и предельная прочность на растяжение (Ultimate Tensile Strength UTS). Все типы волокон демонстрируют гибкое поведение до значения предельного растягивающего напряжения.

Таблица 1

На рис. 6. показана кривая деформации напряжений волокон (Fibers), полимеров (Matrix) и FRP.

Рис. 6

Поведение материалов, используемых для укрепления структурных элементов, является линейным для разрушения и не имеет порога ползучести, как в стали (см. рис. 7).

Рис. 7. Разница между поведением FRP и стали

Преимущества FRP состоят в том, что этот материал устойчив к химической коррозии, высокоустойчив к эрозионному воздействию явлений окружающей среды, обладает высоким коэффициентом прочности / веса. Вес FRP составляет примерно 1/5 веса стального материала, тогда как его прочность в 8–10 раз больше прочности стали. Плюсы использования FRP заключаются также в простоте изготовления и установке, экономии времени и затрат при техническом обслуживании и ремонте. Кроме того, FRP обладает переменным электромагнитным полем, позволяющем использовать их в особенных установках.

Таким образом, основной принцип усиления колонны стекловолокнами состоит в том, чтобы установить материал по всем сторонам колонны, выдерживая направление волокон вертикально на продольной оси колонны, как показано на рис.8.

Рис. 8

Волокна противостоят случайным искажениям, вызванным эффектом Пуассона при нажатии колонны. Боковое давление, создаваемое в слое волокна, создает трехмерное напряжение в бетоне, как показано на рис.9, что приводит к значительному улучшению прочности и пластичности по сравнению с состоянием бетона под осевым давлением.

Рис. 9

Литература:

1. ABAQUS Version 6.12 (2012). “ABAQUS/Standard User’s Manual”. ABAQUS Inc. USA.

2. Irwan R, Rahman A (2002). “FRP STRENGTHENING OF CONCRETE STRUCTURES — DESIGN CONSTRAINTS AND PRACTICAL EFFECTS ON CONSTRUCTION DETAILING” BBR Systems Ltd, Zurich.

3. JIANG.T (2008). “FRP Confined RC Columns: Analysis, Behavior, and Design”. PHD thesis, the Hong Kong polytechnic university.

4. Raval. R, Dave. U (2013). “Behavior of GFRP Wrapped RC Columns of Different Shapes”. Chemical, Civil and Mechanical tracks of the 3rd Nirma University International Conference on Engineering (NUiCONE 2012), India.

Основные термины (генерируются автоматически): FRP, волокно, высокая прочность, AFRP, CFRP, GFRP, UTS, связующий материал, укрепление колонн, усиление колонн.


Ключевые слова

усиление, FRP, стекловолокна

Похожие статьи

Усиление металлических конструкций композитными материалами

Принципиально новым способом усиления металлических конструкций является способ

Высокая прочность (выше прочности стали). – Высокая стойкость к коррозии.

Усиление композиционными материалами, как метод восстановления и увеличения несущей...

Cовременные проблемы применения композиционных...

Cовременные проблемы применения композиционных материалов для усиления

В статье рассмотрены проблемы долговечности и прочности полимеров, армированных волокнами

Polymeric fibers including aramid fibers (AFRP); Carbon fibers including pan-based carbon and...

Сравнение способов усиления железобетонных консолей колонн...

Усиление — основное средство увеличения продолжительности эксплуатации конструкций, особенно при реконструкции. В некоторых случаях затраты на усиление могут достигать значительных размеров и поэтому перед проектировщиками ставится задача доказать его...

Реконструкция мостов с использованием композитных...

усиление балок с использованием композитных материалов. Рис.1. Классический метод усиления.

В зависимости от типа волокон композитные материалы подразделяют на основе

Таким образом выходя из выше изложенного можно сделать вывод, что системы с...

Усиления железобетонных балок перекрытия углепластиком

В статье рассмотрены такие вопросы, как усиление железобетонных конструкций, расчет усиление балок перекрытия углепластиком, а так же описано направление, связанное с использованием композитных материалов на основе углеродных волокон.

Сдерживающие факторы использования композитной арматуры

В статье представлена информация о свойствах композитной арматуры, основных ее достоинствах и недостатках по сравнению с традиционной стальной арматурой. Рассмотрены области применения композитной арматуры, приведены примеры, в которых использовать...

Композитные материалы на основе углеродных волокон

Углеродное волокноматериал, состоящий из тонких нитей диаметром от 5 до 15 мкм

Углеродные волокна имеют исключительно высокую термостойкость — в инертных средах или в

Это инновационный материал, высокая стоимость которого обусловлена трудоемким...

Применение композиционных материалов в конструкции БПЛА

С ростом спроса к новым моделям беспилотной техники растет потребность в создании новых материалов для ее изготовления. С 1960-х годов благодаря своим характеристикам композиционные материалы успешно внедряются в авиационную и космическую технику [1]...

Усиление тканевыми полимерными композитами железобетонных...

В последние годы для усиления таких конструкций широко используются тканевые композитные материалы из тонких волокон высокой прочности, работающих в составе матрицы из полимерной смолы. Такое усиление требуется для увеличения несущей способности...

Способ восстановления несущей способности симметричных...

Консоли колонн промышленных зданий проектировались традиционно с наклонной гранью

Отогнутые стержни при кранах высокой грузоподъемности устанавливались в двух уровнях по высоте консоли.

Это не может не сказаться на прочности и надежности консолей колонн.

Похожие статьи

Усиление металлических конструкций композитными материалами

Принципиально новым способом усиления металлических конструкций является способ

Высокая прочность (выше прочности стали). – Высокая стойкость к коррозии.

Усиление композиционными материалами, как метод восстановления и увеличения несущей...

Cовременные проблемы применения композиционных...

Cовременные проблемы применения композиционных материалов для усиления

В статье рассмотрены проблемы долговечности и прочности полимеров, армированных волокнами

Polymeric fibers including aramid fibers (AFRP); Carbon fibers including pan-based carbon and...

Сравнение способов усиления железобетонных консолей колонн...

Усиление — основное средство увеличения продолжительности эксплуатации конструкций, особенно при реконструкции. В некоторых случаях затраты на усиление могут достигать значительных размеров и поэтому перед проектировщиками ставится задача доказать его...

Реконструкция мостов с использованием композитных...

усиление балок с использованием композитных материалов. Рис.1. Классический метод усиления.

В зависимости от типа волокон композитные материалы подразделяют на основе

Таким образом выходя из выше изложенного можно сделать вывод, что системы с...

Усиления железобетонных балок перекрытия углепластиком

В статье рассмотрены такие вопросы, как усиление железобетонных конструкций, расчет усиление балок перекрытия углепластиком, а так же описано направление, связанное с использованием композитных материалов на основе углеродных волокон.

Сдерживающие факторы использования композитной арматуры

В статье представлена информация о свойствах композитной арматуры, основных ее достоинствах и недостатках по сравнению с традиционной стальной арматурой. Рассмотрены области применения композитной арматуры, приведены примеры, в которых использовать...

Композитные материалы на основе углеродных волокон

Углеродное волокноматериал, состоящий из тонких нитей диаметром от 5 до 15 мкм

Углеродные волокна имеют исключительно высокую термостойкость — в инертных средах или в

Это инновационный материал, высокая стоимость которого обусловлена трудоемким...

Применение композиционных материалов в конструкции БПЛА

С ростом спроса к новым моделям беспилотной техники растет потребность в создании новых материалов для ее изготовления. С 1960-х годов благодаря своим характеристикам композиционные материалы успешно внедряются в авиационную и космическую технику [1]...

Усиление тканевыми полимерными композитами железобетонных...

В последние годы для усиления таких конструкций широко используются тканевые композитные материалы из тонких волокон высокой прочности, работающих в составе матрицы из полимерной смолы. Такое усиление требуется для увеличения несущей способности...

Способ восстановления несущей способности симметричных...

Консоли колонн промышленных зданий проектировались традиционно с наклонной гранью

Отогнутые стержни при кранах высокой грузоподъемности устанавливались в двух уровнях по высоте консоли.

Это не может не сказаться на прочности и надежности консолей колонн.

Задать вопрос