Статья посвящена вопросам обоснования паротеплового воздействия на пласт с целью повышения эффективности разработки месторождений, содержащих нефти повышенной вязкости. Авторы предлагают применять на месторождениях природных битумов и высоковязких нефтейпароциклические обработки скважин (ПТОС), характеризующееся более быстрым периодом окупаемости и более низким паронефтяным отношением по сравнению с паротепловым воздействием на весь пласт.
Ключевые слова: скважинная продукция, высоковязкая нефть, горячая вода, нефтяной пласт, паротепловая обработка, коэффициент извлечения нефти.
Особенность освоения мелких месторождений высоковязкой нефти связана с отсутствием специального оборудования. Обустройства такого рода месторождений не дает высоких экономических показателей, следовательно, применение типового оборудования в таких условиях нерентабельно [1].
При разработке мелких месторождений высоковязких нефтей, нефтяные компании испытывают некоторые проблемы, связанные с физико-химическими свойствами нефтей: сложное строение и низкие энергетические показатели; небольшие объемы добычи нефти; низкий коэффициент извлечения нефти; малодебитные скважины; затруднение в подборе объектов для системы ППД; быстрое обводнение скважинной продукции; осложнения эксплуатации нефтепромыслового оборудования; аварийность работающего оборудования; высокие эксплуатационные затраты на обустройство месторождений [2].
Сократить затраты в системе добычи, сбора и подготовки скважинной продукции возможно, применяя новые технологические решения, позволяющие улучшить эффективность извлечения скважинной продукции в осложненных геолого-промысловых условиях.
Разработка мелких месторождений высоковязкой нефти предусматривает применение комплекса организационно-технологических мероприятий, предусматривающих применение высокоэффективных и менее затратных методов борьбы с осложнениями, включающих в себя: применение модернизированного технологического оборудования и технических устройств.
Применение новых технологий и оборудования позволит предотвратить потери нефти по причине аварийной замены отказавшего внутрискважинного и нефтепромыслового оборудования, а также сократить затраты на закупку, ремонт и замену отказавшего оборудования. Учитывая опыт крупных компаний, применяющих новые технологии и оборудование, малые компании смогут оптимизировать технико-экономические показатели разработки сложного месторождения.
Для повышения эффективности разработки месторождений, содержащих нефти повышенной вязкости, широко применяются термические методы воздействия на пласт.
Рис. 1. Основные технологии термического воздействия на пласт
Освоение месторождений тяжелых нефтей и битумов предусматривает применение наиболее эффективных термических методов, но в то же время остаются не решенными вопросы, связанные с комплексной эксплуатацией месторождения. Повышение нефтеоотдачи в условиях добычи высоковязких нефтей обязательно связано с увеличением температуры нефтеносного пласта, что следует из анализа температурного изменения физических свойств скважинной продукции.
Для выбора метода теплового воздействия на пласт месторождения необходимо учесть факторы, влияющие на повышение эффективности теплового воздействия, а также возможность снижения себестоимости при проведении данной технологической операции [3].
Водяной пар благодаря скрытой теплоте парообразования обладает значительно большим теплосодержанием, чем горячая вода. В процессе закачки пара нефтяной пласт нагревается в первую очередь за счет использования скрытой теплоты парообразования. Пар поступает в поровое пространство и конденсируется. Пласт нагревается за счет использования теплоты горячего конденсата, а затем охлаждается до начальной температуры пласта. При вытеснении нефти паром имеет место улучшение испарения углеводородов за счет снижения их парциального давления. Процесс внутрипластового горения обладает всеми преимуществами термических методов вытеснения нефти горячей водой и паром, а также смешивающегося вытеснения, происходящего в зоне термического крекинга, в которой все углеводороды переходят в газовую фазу.
Современное состояние изученности высоковязких нефтей и природных битумов позволяет утверждать, что они отличаются от традиционных нефтей по химическому составу, физико-химическим свойствам, а также по степени взаимодействия с коллекторами и по структуре их насыщения. Это существенно влияет на коэффициент эффективности добычи высоковязкой нефти. Поэтому, методы и подходы, применяемые при разработке залежей традиционных нефтей, не могут быть внедрены на залежах высоковязких нефтей и природных битумов.
Наименьшим процентом к извлекаемым запасам нефти характеризуется месторождение Салтанат. Месторождение природных битумов и высоковязких нефтей Салтанат расположено в Атырауской области Респубдики Казахстан, на правобережье р. Эмба.
Большинство проектов по паротепловому воздействию начинается с пароциклических обработок скважин (ПТОС), характеризующуяся более быстрым периодом окупаемости и более низким паронефтяным отношением по сравнению с паротепловым воздействием на весь пласт [4].
Циклическое нагнетание пара в пласты, или пароциклические обработки добывающих скважин, осуществляются периодическим нагнетанием пара в нефтяной пласт через добывающие скважины, некоторой выдержкой их в закрытом состоянии и последующей их эксплуатацией.
Цель этой технологии заключается в увеличении притока нефти к скважинам за счет снижения вязкости нефти, повышения забойного давления, облегчения условия фильтрации.
Для определения основных технологических параметров и эффективности пароциклического воздействия на призабойную зону скважин необходимо решить следующие задачи. Во-первых, рассчитать период закачки теплоносителя (пара) в пласт, определить распределение температуры в призабойной зоне и эффективные размеры зоны, охваченной тепловым воздействием. Во-вторых, решить задачу о паротепловой пропитке, т. е. прогнозировать скорость конденсации пара и всасывания нефти из «холодной» области пласта в прогретую зону. И, наконец, рассчитать степень повышения продуктивности скважины за счет разогрева нефти в призабойной зоне и закон падения дебита по мере охлаждения призабойной зоны потоком нефти из пласта.
Физико-химические методы применяются в отношении нефтей малой и средней вязкости, что не отвечает характеристикам пластовых флюидов месторождения Салтанат. Так же минусом данных методов является и высокая стоимость реагентов, что может привести к неоправданным затратам при разработке данного месторождения.
Таблица 1
Критерии применения методов увеличения нефтеотдачи вмировой практике
Методы |
Технология |
Глубина залеган., м |
Толщина пласта, м |
Прони-цаемостьмкм2 |
Порис-тость,% |
Вяз-кость, мПа*с |
Плот-ность, кг/м3 |
Холодные методы |
Шахтовый метод, CHOPS, ГС, VAPEX, водонагнетание |
50–800 |
20–200 |
1–12 |
20–40 |
20000–45000 |
932–935 |
Термические методы |
Закачка горячей воды, вытеснение нефти паром, CSS, внутрипластовое горение, SAGD, SAP, THAI, N-Solv, забойные электронагреватели |
50–1500 |
2.7–250 |
0.005–9.38 |
15–37 |
0.6–45000 |
825–1070 |
Физико-химические методы |
Полимерное заводнение, вытеснение нефти ПАВ, комбинированные методы |
600–3500 |
1.1–68.5 |
0.005–2 |
30–40 |
0.86–500 |
850–960 |
Газовые методы |
Закачка диоксида углерода |
1253–3370 |
3–150 |
0.004–1.714 |
23–30 |
0.45–50 |
815–976 |
Гидродинамические методы |
Волновое воздействие |
178–2561 |
3.8–25 |
0.001–0.928 |
10–30 |
0.95–28.2 |
748–931 |
Опыт применения закачки воды в пласт на надсолевых залежах месторождения Кенкияк показал, что данный метод является неэффективным в условиях высокой вязкости нефти, в связи с чем, метод не рекомендуется для применения на месторождении Салтанат. Использование волновых методов возможно на заключительных этапах разработки, так как они могут распространять свое влияние на значительные расстояния (сотни и тысячи метров), а площадь залежей II и III не превышает 6 км2.
Наиболее оптимальным выбором будет применение термических методов разработки. В ходе проведенного анализа установлено, что из существующего множества термических методов добычи ВВН и ПБ метод паротеплового воздействия получил наибольшее распространение. Объяснением данного факта является более высокая теплоемкостью пара по сравнению с водой и газом [5]. Данный метод имел положительный результат при применении его на соседнем месторождении Кенкияк.
В настоящее время метод CSS является наиболее изученным способом извлечения тяжелой нефти и имеет большой опыт применения в разных странах мира. Коэффициент извлечения нефти составляет 15–20 %. Технология CSS может быть рекомендована для применения на месторождении Салтанат.
В настоящее время на месторождении проведена пробная эксплуатация четырех скважин после проведения паротепловой обработки. Воздействие высокотемпературного пара на залежи ПБ и ВВН показало высокую эффективность данной технологии в существующих горно-геологических условиях. На рисунке 2 представлены приведенные на первую дату добычи графики динамики дебита нефти и жидкости, обводненности, приемистости пара по результатам проведения паротепловой обработки в скважинах.
Рис. 2 Приведенные графики динамики основных технологических показателей работы скважин по результатам применения ПЦОС
Применение модели с оптимальными параметрами для месторождения Салтанат позволяет увеличить дебит добывающей скважины в среднем на 30–40 %
Литература:
- Желтов Ю. В., Кудинов В. И., Малофеев Г. Е. Разработка сложнопостроенных месторождений вязкой нефти в карбонатных коллекторах. — М.- Нефть и газ.- 1997г.
- Мирзаджанзаде А. Х., Аметов И. М. Прогнозирование промысловой эффективности методов теплового воздействия на нефтяные пласты. — М.: Недра, 1983.-222 с.
- Дошер Т. М., Хассеми Фархад. Влияние вязкости нефти и толщины продуктивного пласта на эффективность паротеплового воздействия // Экспресс-информ. Сер. Нефтепромысловое дело. М.: ВНИИОЭНГ.- 1984. с. 3–44.
- Андреев, В. Е. Освоение трудноизвлекаемых запасов нефтяных месторождений с применением энерго- и ресурсосберегающих технологий [Текст] / В. Е. Андреев, Ю. А. Котенев, Р. Р. Хузин. — Уфа: Изд-во «Гилем» АН РБ, 2011. — 352 с.
- Ишкинеев, Д. А. Проблемы разработки мелких месторождений высоковязкой нефти Татарстана [Текст] / Д. А. Ишкинеев // Энергоэффективность. Проблемы и решения: Матер. XIV Всеросс. научн.-практ. конф. — Уфа, 2014. — С. 51–53.