Моделирование САР скорости системы «АИН ШИМ – АД» с переменными ΨR - IS с контуром потока в системе абсолютных единиц | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 28 декабря, печатный экземпляр отправим 1 января.

Опубликовать статью в журнале

Библиографическое описание:

Моделирование САР скорости системы «АИН ШИМ – АД» с переменными ΨR - IS с контуром потока в системе абсолютных единиц / А. А. Емельянов, В. В. Бесклеткин, В. М. Гусев [и др.]. — Текст : непосредственный // Молодой ученый. — 2018. — № 47 (233). — С. 1-18. — URL: https://moluch.ru/archive/233/54134/ (дата обращения: 16.12.2024).



Моделирование САР скорости системы «АИН ШИМ – АД» с переменными ΨR - IS сконтуром потока в системе абсолютных единиц

Емельянов Александр Александрович, старший преподаватель;

Бесклеткин Виктор Викторович, старший преподаватель;

Гусев Владимир Михайлович, студент магистратуры;

Маклыгин Константин Андреевич, студент;

Коновалов Илья Дмитриевич, студент;

Камеристов Кирилл Владимирович, студент

Российский государственный профессионально-педагогический университет (г. Екатеринбург)

Пестеров Дмитрий Ильич, студент магистратуры

Уральский государственный университет путей сообщения (г. Екатеринбург)

В этой статье рассмотрена САР скорости АД с контуром потока и синусоидальной ШИМ в системе абсолютных единиц, являющаяся дальнейшим развитием работы [1].

В работе [1] были получены уравнения асинхронного двигателя по проекции x (+1):

(1)

(2)

(3)

(4)

(5)

Подставим уравнение (3) в (2):

Отсюда выразим слагаемое :

(6)

Для получения апериодического звена перенесем слагаемые с ΨRx в левую часть и умножим обе части уравнения на Lm:

Обозначим постоянную времени потока в реальном времени :

где - постоянная времени потока в машинном (ЭВМ) времени .

Составляющая потокосцепления ротора ΨRx определится в следующей форме:

(7)

Структурная схема для определения потокосцепления ΨRx приведена на рис. 1.

Рис. 1. Структурная схема для определения потокосцепления ΨRx

Подставим выражения ΨSx и ΨSy из уравнений (4) и (5) в уравнение (1):

(8)

В полученное уравнение подставим выражение (6) и перенесем слагаемые с переменными ISx в левую часть:

Обозначим постоянную времени статорной обмотки в реальном времени :

где - постоянная времени статорной обмотки в машинном (ЭВМ) времени .

Составляющая статорного тока ISx определится в следующей форме:

Структурная схема для определения тока ISx дана на рис. 2.

Рис. 2. Структурная схема для определения тока ISx

Аналогично, выразим ΨRy и ISy из системы уравнений по проекции y (+j):

(9)

(10)

(11)

(12)

(13)

Подставим уравнение (11) в (10) и выразим :

(14)

Перенесем слагаемые с ΨRy в левую часть и умножим обе части уравнения на Lm:

Потокосцепление ΨRy определится в следующей форме:

Структурная схема для определения потокосцепления ΨRy приведена на рис. 3.

Рис. 3. Структурная схема для определения потокосцепления ΨRy

Для определения ISy подставим уравнения (12) и (13) в (9):

(15)

В полученное уравнение подставим из (14) и перенесем слагаемые с переменными ISy в левую часть:

Ток ISy определится в следующей форме:

Структурная схема для определения ISy приведена на рис. 4.

Рис. 4. Структурная схема для определения тока ISy

На рис. 5 представлена структурная схема для реализации уравнения электромагнитного момента:

Рис. 5. Математическая модель определения электромагнитного момента M

Механическая угловая скорость вращения вала двигателя (рис. 6):

Рис. 6. Математическая модель определения механической угловой скорости вращения вала двигателя

Электрическая скорость вращения ротора (рис. 7):

Рис. 7. Математическая модель определения электрической скорости вращения ротора

Математическая модель асинхронного двигателя с короткозамкнутым ротором с переменными IS ΨR на выходе апериодических звеньев в системе абсолютных единиц приведена на рис. 8. Параметры асинхронного двигателя рассмотрены в работах [3] и [4].

F:\ALL\С12\2018\3. Март\2.5\myfig.meta

Рис. 8. Математическая модель асинхронного двигателя с переменными ΨR–IS на выходе апериодических звеньев в системе абсолютных единиц

Развернутая схема САР скорости системы «АИН ШИМ – АД» приведена на рис. 9. Под каждым элементом схемы указаны его номер и название.


H:\ALL\С12\2018\11. Ноябрь\4.1\myfig.meta

Рис. 9. Математическая модель САР скорости системы «АИН ШИМ – АД»


В контурах тока по проекциям x и y были получены одинаковые передаточные функции объектов управления:

Синтез регуляторов тока производится по классической схеме [2]:

где - компенсация объекта;

- исключение статической ошибки;

- введение новой постоянной времени контура тока.

Передаточная функция фильтра:

Принимаем настройку на модульный оптимум , тогда передаточные функции регуляторов тока по проекциям x и y:

где Tμ - некомпенсируемая постоянная времени (примем Tμ = 0,0005 с).

Обозначим:

Математические модели ПИ-регуляторов тока по проекциям x и y под номерами 4 и 6 приведены на рис. 10 и 11.

F:\ALL\С12\2018\3. Март\2.5\myfig.meta

Рис. 10. ПИ-регулятор тока по проекции x

F:\ALL\С12\2018\3. Март\2.5\myfig.meta

Рис. 11. ПИ-регулятор тока по проекции y

Важной частью структуры является наблюдатель, который служит для вычисления амплитуды и углового положения вектора потокосцепления ротора. Поскольку в системе x, y поток ориентирован по оси x, определим модуль |ΨRx|, исключив из уравнения (7) составляющую потока ΨRy:

(16)

Таким образом, модуль потока ротора связан с x-составляющей тока статора через передаточную функцию апериодического звена [6].

Из уравнения (14) выразим при ΨRy = 0:

Интегрируя , можно получить угол потока ротора ΨRx [6].

Математическая модель наблюдателя потокосцепления ротора (номер 14) приведена на рис. 12.

F:\ALL\С12\2018\3. Март\2.5\myfig.meta

Рис. 12. Модель наблюдателя потокосцепления ротора

Приведем структурную схему контура потока ротора (рис. 13).

Рис. 13. Структурная схема контура потока ротора

При определении регулятора потокосцепления учтем следующее:

‒ до тех пор, пока поток ΨRx не установится, нельзя включать сигнал задания на задатчик интенсивности, т.е. Ω = 0;

‒ напряжение Usx близко к нулю.

Из (16) передаточная функция объекта управления в контуре потока будет иметь следующий вид:

Передаточная функция регулятора потока:

Примем , где n = 1; 2; 10; 20. Тогда передаточная функция регулятора потока определится следующим образом:

Выразим коэффициенты ПИ-регулятора потока:

Модель ПИ-регулятора потока под номером 2 представлена на рис. 14.

F:\ALL\С12\2018\3. Март\2.5\myfig.meta

Рис. 14. ПИ-регулятор потока

В контуре скорости передаточная функция объекта имеет следующий вид:

Синтез регулятора скорости:

где

Математическая модель П-регулятора скорости (номер 1) приведена на рис. 15.

F:\ALL\С12\2018\3. Март\2.5\myfig.meta

Рис. 15. Пропорциональный регулятор скорости

В системе управления предусмотрена компенсация внутренних перекрестных связей. Из уравнений (8) и (15) выразим компенсационные составляющие каналов управления:

Математическая модель компенсации перекрестных связей (номер 5) представлена на рис. 16.

F:\ALL\С12\2018\3. Март\2.5\myfig.meta

Рис. 16. Компенсация внутренних перекрестных связей

Задание на скорость Ω* формируется в блоке Signal Builder (рис. 17).

Рис. 17. Сигнал задания на скорость Ω*

Номинальное потокосцепление ротора в абсолютных единицах в соответствии с [3] определяется по следующей формуле и при векторном управлении поддерживается постоянным:

где - номинальное потокосцепление ротора в относительных единицах;

- базовое значение потокосцепления.

Задание на статорный ток по проекции y:

Отсюда

Математическая модель определения задания (номер 3) дана на рис. 18.

F:\ALL\С12\2018\3. Март\2.5\myfig.meta

Рис. 18. Реализация задания статорного тока по проекции y

Преобразователи координат на развернутой схеме САР скорости под номерами 7 и 8 ( и ) приведены на рис. 19 и 20 [4].

E:\MATLAB\R2016a\bin\myfig.meta

Рис. 19. Преобразователь координат: USx, USyu, u

F:\ALL\С12\2018\3. Март\2.4\myfig.meta

Рис. 20. Преобразователь координат: u, uusa, usb, usc

Математические модели АИН ШИМ (номер 10) и генератора пилообразного напряжения ГПН (номер 9) даны на рис. 21 и 22. Работа АИН ШИМ была рассмотрена нами в статьях за 2016 г.

C:\Program Files\MATLAB\R2015b\bin\myfig.meta

Рис. 21. Генератор пилообразного напряжения (ГПН)

Преобразователи координат под номерами 11 и 12 ( и ) даны на рис. 23 и 24.


C:\Program Files\MATLAB\R2015b\bin\myfig.meta

Рис. 22. Математическая модель АИН ШИМ


F:\ALL\С12\2018\3. Март\2.4\myfig.meta

Рис. 23. Преобразователь координат: uа шим, ub шим, uc шимu, u

E:\MATLAB\R2016a\bin\myfig.meta

Рис. 24. Преобразователь координат: u, uUSx, USy

Обратные преобразователи координат по статорным токам с номерами 15 и 16 на развернутой схеме САР скорости приведены на рис. 25 и 26 [4].

E:\MATLAB\R2016a\bin\myfig.meta

Рис. 25. Обратное преобразование (1-я ступень): ISx, ISyI, I

E:\MATLAB\R2016a\bin\myfig.meta

Рис. 26. Обратное преобразование (2-я ступень): I, IISa, ISb, ISc

Расчет параметров производим в Script:

PN=320000;

UsN=380;

IsN=324;

fN=50;

Omega0N=104.7;

OmegaN=102.83;

nN=0.944;

cos_phiN=0.92;

zp=3;

Rs=0.0178;

Xs=0.118;

Rr=0.0194;

Xr=0.123;

Xm=4.552;

J=28;

Ub=sqrt(2)*UsN;

Ib=sqrt(2)*IsN;

OmegasN=2*pi*fN;

Omegab=OmegasN;

Omegarb=Omegab/zp;

Zb=Ub/Ib;

Psib=Ub/Omegab;

Lb=Psib/Ib;

kd=1.0084;

Mb=kd*PN/OmegaN;

Pb=Mb*Omegarb;

rs=Rs/Zb;

lbs=Xs/Zb;

lbr=Xr/Zb;

lm=Xm/Zb;

Lm=lm*Lb;

kr=lm/(lm+lbr);

SsN=3*UsN*IsN;

ZetaN=SsN/Pb;

betaN=(Omega0N-OmegaN)/Omega0N;

lbe=lbs+lbr+lbs*lbr*lm^(-1);

Lbe=lbe*Lb;

roN=0.9962;

rrk=roN*betaN;

Rrk=rrk*Zb;

Tr=lm/(rrk*kr);

re=rs+rrk*kr^2;

Re=re*Zb;

Te=kr*lbe/re;

Psi_rN=1.612;

n=20;

un=2.2;

Tm=0.0005;

Tmw=0.001;

Числовые значения параметров выводятся в окне Workspace (рис. 27).

Рис. 27. Числовые значения параметров в окне Workspace

Результаты моделирования САР скорости системы «АИН ШИМ – АД» приведены на рис. 28, …, 31.

Рис. 28. Графики потокосцеплений, скорости и электромагнитного момента при и fоп = 10 кГц

Рис. 29. Динамическая механическая характеристика при и fоп = 10 кГц

Рис. 30. Графики потокосцеплений, скорости и электромагнитного момента при и fоп = 30 кГц

Рис. 31. Динамическая механическая характеристика при и fоп = 30 кГц

Литература:

  1. Емельянов А.А., Гусев В.М., Пестеров Д.И., Даниленко Д.С., Бесклеткин В.В., Быстрых Д.А., Иванин А.Ю. Моделирование САР скорости асинхронного двигателя с переменными ΨR - IS с контуром потока в системе абсолютных единиц // Молодой ученый. — 2018. — №13. — С. 22-40.
  2. Шрейнер Р.Т. Системы подчиненного регулирования электроприводов: учеб. пособие / Р.Т. Шрейнер. - Екатеринбург: Изд-во ГОУ ВПО «Рос. гос. проф.-пед. ун-т», 2008. – 279 с.
  3. Шрейнер Р.Т. Электромеханические и тепловые режимы асинхронных двигателей в системах частотного управления: учеб. пособие / Р.Т. Шрейнер, А.В. Костылев, В.К. Кривовяз, С.И. Шилин. Под ред. проф. д.т.н. Р.Т. Шрейнера. - Екатеринбург: ГОУ ВПО «Рос. гос. проф.-пед. ун-т», 2008. - 361 с.
  4. Шрейнер Р.Т. Математическое моделирование электроприводов переменного тока с полупроводниковыми преобразователями частоты. – Екатеринбург: УРО РАН, 2000. - 654 с.
  5. Шрейнер Р.Т. Электроприводы переменного тока на базе непосредственных преобразователей частоты с ШИМ: монография / Р.Т. Шрейнер, А.И. Калыгин, В.К. Кривовяз; под. ред. Р.Т. Шрейнера. - Екатеринбург: ФГАОУ ВПО «Рос. гос. проф.-пед. ун-т», 2012. – 223 с.
  6. Калачёв Ю.Н. Наблюдатели состояния в векторном электроприводе. - М.: Самиздат, 2015. - 80 с.
Основные термины (генерируются автоматически): структурная схема, математическая модель, преобразователь координат, асинхронный двигатель, левая часть, номер, электромагнитный момент, передаточная функция, проекция, статорный ток.


Похожие статьи

Моделирование САР скорости системы «АИН ШИМ – АД» с переменными Ψm – IS с контуром потока в системе абсолютных единиц

Моделирование САР скорости системы «АИН ШИМ – АД» с переменными ψm – is с контуром потока в системе относительных единиц

Моделирование САР скорости системы «АИН ШИМ – АД» с переменными ψr - is с контуром потока в системе относительных единиц

Математическое моделирование САР скорости системы «АИН ШИМ – АД» с переменными на основе интегрирующих звеньев

Моделирование САР скорости асинхронного двигателя с переменными ΨR - IS с контуром потока в системе абсолютных единиц

Моделирование системы АИН ШИМ – АД с переменными в неподвижной системе координат αβ на основе апериодических звеньев

Моделирование САР скорости асинхронного двигателя с переменными Ψm - IS с контуром потока в системе абсолютных единиц

Моделирование системы АИН ШИМ – АД с переменными во вращающейся системе координат на основе интегрирующих звеньев

Математическое моделирование САР скорости системы «АИН ШИМ – АД» с переменными на основе апериодических звеньев в Script-Simulink

Математическое моделирование САР скорости системы «АИН ШИМ – АД» с идеализированными транзисторными ключами

Похожие статьи

Моделирование САР скорости системы «АИН ШИМ – АД» с переменными Ψm – IS с контуром потока в системе абсолютных единиц

Моделирование САР скорости системы «АИН ШИМ – АД» с переменными ψm – is с контуром потока в системе относительных единиц

Моделирование САР скорости системы «АИН ШИМ – АД» с переменными ψr - is с контуром потока в системе относительных единиц

Математическое моделирование САР скорости системы «АИН ШИМ – АД» с переменными на основе интегрирующих звеньев

Моделирование САР скорости асинхронного двигателя с переменными ΨR - IS с контуром потока в системе абсолютных единиц

Моделирование системы АИН ШИМ – АД с переменными в неподвижной системе координат αβ на основе апериодических звеньев

Моделирование САР скорости асинхронного двигателя с переменными Ψm - IS с контуром потока в системе абсолютных единиц

Моделирование системы АИН ШИМ – АД с переменными во вращающейся системе координат на основе интегрирующих звеньев

Математическое моделирование САР скорости системы «АИН ШИМ – АД» с переменными на основе апериодических звеньев в Script-Simulink

Математическое моделирование САР скорости системы «АИН ШИМ – АД» с идеализированными транзисторными ключами

Задать вопрос