В интервале температур 300–4000С в проточной установке со стационарным слоем катализатора при атмосферном давлении изучено влияние мольного отношения SiO2/Al2O3 на концентрацию кислотных центров, распределение продуктов и направление реакций при превращении этанола на пентасилах. Установлено, что распределение продуктов превращение этанола зависит от мольного отношения SiO2/Al2O3 в цеолите. С ростом SiO2/Al2O3 в цеолите происходит увеличение выхода этилена и пропилена, а также снижение селективности по крекингу и ароматизации. Более высокая изомеризующая селективность наблюдается на образцах с мольным отношением SiO2/Al2O3 равным 61 и 78. Снижение селективности по крекингу и ароматизации обусловлено существенным снижением концентрации сильных кислотных центров с ростом мольного отношения SiO2/Al2O3 в цеолите.
Ключевые слова: цеолит типа пентасила, этанол, мольное отношение SiO2/Al2O3, кислотные центры, селективность.
В связи с неизбежным истощением запасов нефти, развитие производства альтернативных топлив, в том числе авиационных, является объективной необходимостью [1]. Альтернативные источники топлива привлекают внимание исследователей в связи с экономическими и экологическими аспектами. Ужесточение требований охраны окружающей среды призывает использовать возобновляемые сырьевые ресурсы. Известно, что биоэтанол может служить как альтернативное нефтяное сырье для получения различных видов топлив и углеводородов [2,3].
Наиболее перспективными каталитическими системами для превращения этанола в углеводороды являются высококремнеземные цеолиты типа пентасила [4–7]. Важной характеристикой цеолитов является мольное соотношение SiO2/Al2O3, которое влияет на скорость и распределение продуктов при превращении углеводородов [8].
В связи с этим, целью настоящего сообщения является изучение влияния мольного соотношения SiO2/Al2O3 в ВК-цеолите типа пентасила на его кислотные свойства, состав, распределение и селективность образования продуктов при превращении этанола в углеводороды.
Экспериментальная часть
Для исследования использовали высокремнеземные цеолиты типа пентасила с мольными отношениями SiO2/Al2O3 равными 24, 61, 78, 103 и 200. Цеолиты предварительно подвергали ионному обмену с целью перевода их в NH4-форму. Ионный обмен проводили трехкратно в 0,1N растворе NH4Cl [8]. После термической обработки NH4-формы при 5000С в течение 4ч. получали Н-формы цеолитов. Опыты проводили в реакторе идеального вытеснения со стационарным слоем катализатора объёмом 5 см3 при атмосферном давлении в интервале температур 300–4000С, объёмной скорости подачи этанола 2ч-1. Состав продуктов реакции анализировали хроматографическим методом [8].
Результаты иих обсуждение.
Из табл.1 видно, что распределение продуктов реакции существенно зависит от мольного отношения SiO2/Al2O3 в цеолите. На цеолитах с мольным отношением 78 и 100 конверсия этанола составляет 100 %. С ростом мольного отношения SiO2/Al2O3 наблюдается увеличение выхода этилена и снижается выход пропана. Так, с ростом мольного отношения с 24 до 200 выход этилена возрастает с 4,7 до 10,7 мас. %, а выход пропана снижается с 14,0 до 6,3 мас. %.
При конверсии этанола на цеолите с мольным отношением SiO2/Al2O3 равном 24 и 61, основную часть продуктов реакции составляет пропан 14,0 мас. % и 12,4 мас. %, изоалканы С4-С6 11,2 и 13,3 мас. % соответственно. Напротив, при конверсии этанола на цеолите с мольным отношением SiO2/Al2O3 равном 200, основная часть приходится на этилен 9,4 мас. %. Содержание изоалканов С4 -С6 и ароматических углеводородов С6-С8 существенно снижается и составляет 10,8 и 3,1 мас. % соответственно.
Таблица 1
Влияние мольного отношения SiO2/Al2O3 вцеолитах типа пентасила на состав продуктов превращения этанола (Т=3500С, v= 1ч-1)
Компоненты |
Мольное отношение SiO2/Al2O3 |
||||
24 |
61 |
78 |
102 |
200 |
|
Н2 |
- |
следы |
следы |
следы |
следы |
С1-С2 |
0,1 |
0,5 |
1,0 |
0,7 |
0,1 |
С2Н5ОН |
2,1 |
1,8 |
0,0 |
0,0 |
10,7 |
С2-С4 |
4,7 |
5,2 |
5,8 |
6,0 |
9,4 |
С3Н8 |
14,0 |
12,4 |
10,9 |
8,8 |
6,3 |
н-С4-С5 |
0,6 |
0,8 |
0,9 |
1,2 |
0,6 |
н-гексан |
0,1 |
0,1 |
0,3 |
0,4 |
0,5 |
изо-С4-С6 |
11,2 |
13,3 |
12,8 |
12,2 |
10,8 |
изо-С7-С14 |
1,4 |
1,5 |
3,1 |
7,2 |
2,9 |
н-С7-С14 |
0,3 |
0,1 |
0,1 |
0,1 |
0,2 |
Алкены С4-С6 |
1,3 |
0,8 |
0,7 |
0,2 |
0,8 |
Алкены С7-С14 |
0,4 |
0,2 |
0,1 |
0,5 |
1,2 |
АрУ С6-С8 |
14,3 |
13,0 |
12,7 |
10,2 |
3,1 |
АрУ С9-С14 |
2,9 |
2,7 |
2,5 |
3,3 |
3,6 |
Нафтены С5-С6 |
0,2 |
0,1 |
0,4 |
0,3 |
0,3 |
Нафтены С7-С14 |
0,6 |
0,4 |
0,8 |
0,9 |
2,2 |
Н2О |
45,3 |
47,2 |
47,8 |
47,9 |
47,3 |
Для цеолита с мольным отношением SiO2/Al2O3 равным 78 отмечается сопоставимое количество образования изоалканов С4-С6 12,2 мас. % и ароматических углеводородов С6-С14 13,5 мас. % соответственно.
В табл. 2 представлена селективность по основным типам реакций при превращении этанола на цеолитах с различным мольным отношением SiO2/Al2O3. Видно, что с ростом SiO2/Al2O3 с 24 до 103 происходит возрастание селективности по изомеризации с 23,4 мас. % до 37,4 мас. %. Дальнейшее увеличение мольного отношения SiO2/Al2O3 в цеолите приводит к снижению селективности по изомеризации до 25,4 %. Увеличение мольного отношения SiO2/Al2O3 в цеолите способствует также существенному снижению селективности по ароматизации и крекингу. Селективность по ароматизации и крекингу уменьшается с 31,5 % до 12,7 % и с 25,7 % до 12,1 % соответственно. Очевидно, что изменение селективности по отношению к реакциям крекинга, ароматизации и изомеризации при превращении этанола связано с различным распределением кислотных центров по силе на Н-формах пентасилах, отличающихся содержанием Al в кристаллической решетке цеолита.
Таблица 2
Влияние мольного отношения SiO2/Al2O3 вцеолите на селективность реакций.
Селективность по основным типам реакций,% |
24 |
61 |
78 |
100 |
200 |
Изомеризация |
23,4 |
28,0 |
30,2 |
37,4 |
25,4 |
Ароматизация |
31,5 |
29,8 |
29,1 |
25,9 |
12,7 |
Крекинг |
25,7 |
24,4 |
22,5 |
18,2 |
12,1 |
Действительно, как видно из данных табл.3 с ростом мольного отношения SiO2/Al2O3 в пентасиле происходит снижение концентрации и силы кислотных центров. Для Н-форм цеолитов наблюдаются два пика, что указывает на наличие двух форм десорбции аммиака в цеолите: низкотемпературный пик с температурными максимами 188–1980С, относящиеся к десорбции аммиака со слабых льюисовских центров, которыми в Н-формах являются координационно-ненасыщенные ионы алюминия и высокотемпературные пики с максимумами 358–434 0С, относящиеся к десорбции аммиака с сильных бренстедовских кислотных центров, которыми являются ионы водорода мостиковых гидроксильных групп.
Таблица 3
Влияние мольного отношения SiO2/Al2O3 на концентрацию кислотных центров вН-пентасиле
Мольное отношение SiO2/Al2O3 |
Тмакс., 0С |
Концентрация кислотных центров, мкмоль/г-1 |
||
Форма I |
Форма II |
Форма I |
Форма II |
|
24 |
198 |
434 |
642 |
561 |
61 |
195 |
408 |
625 |
528 |
78 |
192 |
394 |
616 |
456 |
100 |
190 |
382 |
602 |
396 |
200 |
188 |
358 |
585 |
321 |
Видно, что с ростом мольного отношения SiO2/Al2O3 в пентасиле происходит существенное изменение его ТД-спектров: низкотемпературные и высокотемпературные пики десорбции аммиака на цеолите смещаются в область низких температур, что свидетельствует о снижении силы и концентрации слабых и сильных кислотных центров. С ростом SiO2/Al2O3 в пентасиле с 24 до 200 концентрация сильных кислотных центров снижается с 561 мкмоль/г до 21 мкмоль/г. Наиболее сильное снижение концентрации сильных кислотных центров наблюдается на образцах с мольным отношением SiO2/Al2O3, равным 103 и 200, поэтому на этих образцах происходит существенное уменьшение селективности по крекингу и ароматизации.
Высокая кислотность образцов с мольным отношением равным 24 и 61 приводит к увеличению селективности по крекингу и ароматизации.
Таким образом, состав и распределение продуктов реакции при превращении этанола зависит от величины мольного отношения SiO2/Al2O3, что обусловлено различным распределением кислотных центров по силе в цеолите в зависимости от содержания Al в кристаллической решетке пентасила.
Литература:
- Третьяков В. Ф. Биоэтанол-стратегия развития топливного и нефтехимического комплекса // Хим. техника. ̶ 2008. ̶ № 1. ̶ С. 8–12.
- Третьяков В. Ф., Талышинский Р. М., Илолов А. М., Будняк А. Д. Получение авиационного топлива конверсией биоэтанола на цеолитных катализаторах// Нефтехимия. ̶ 2017. ̶ Т. 57. ̶ № 3. ̶ С. 241.
- Яновский Л. С., Федоров Е. П., Варламова Н. И., Бородако П. В., Попов И. М. Альтернативные реактивные топлива: проблемы и перспективы.// Вестник НАУ. ̶ 2009. ̶ № 1. ̶ С. 108–112
- Третьяков В. Ф.1, Чан Тхи Куинь Ньы, Талышинский Р. М., Илолов А. М., Французова Н. А. Каталитическая конверсия биоэтанола в ароматические углеводороды в присутствии пероксида водорода. // Вестник МИТХТ им. М. В. Ломоносова. ̶ 2013. ̶ Т. 8. ̶ № 6. ̶ С. 37–41.
- Третьяков В. Ф., Макарфи Ю. И., Талышинский Р. М., Французова Н. А., Торховский В. Н., Антонюк С. Н., Третьяков К. В. Каталитическая конверсия биоэтанола в углеводороды. //Вестник МИТХТ им. М. В. Ломоносова. ̶ Т. 5. ̶ № 4. ̶ 2010. ̶ С 77–86.
- Aguayo A. T., Gayaubo A. G., Tarro A. M., Atutxa A., Bilbao J. Study of operating variables in the transformation of aqueous ethanol into hydrocarbons on an HZSM-5 //J. Chem. Technol. Biotechnol. ̶ 2002. ̶ Vol. 77. ̶ P. 211–216
- Третьяков В. Ф., Ньы Ч. Т. К., Третьяков К. В., Сильченкова О. Н., Матышак В. А. Превращение этанола на модифицированном цеолите HZSM-5 по данным спектрокинетических исследований in situ // Журн. физ. химии. ̶ 2013. ̶ Т. 87. ̶ № 6. ̶ С. 965–965.
- Керимли Ф. Ш., Мамедов С. Э. Влияние мольного отношения SiO2/Al2O3 на кислотные и каталитические свойства HZSM-5 в реакции диспропорционирования этилбензола // Молодой ученый. ̶ 2017. ̶ № 27 (161). ̶ С. 12–14