Автор: Аршинова Наталья Германовна

Рубрика: Медицина

Опубликовано в Молодой учёный №10 (21) октябрь 2010 г.

Статья просмотрена: 90 раз

Библиографическое описание:

Аршинова Н. Г. Сопряженность основных гематологических параметров и показателей ЭХОКС у спортсменов в состоянии относительного покоя // Молодой ученый. — 2010. — №10. — С. 319-323. — URL https://moluch.ru/archive/21/2095/ (дата обращения: 15.12.2017).

            Кровь – важнейшая интегрирующая система, которая обеспечивает обмен метаболитами и информацией между тканями и клетками, пластическую и защитную функции организма. Протекая по закрытому контуру, кровь контактирует со всеми органами. Многообразие и важность функций, огромная протяжённость приводят к значительной уязвимости системы кровообращения.

            Одна из главных проблем, которую решает спортивная физиология – раскрытие закономерностей гемодинамического обеспечения мышечной деятельности. По мере роста спортивного мастерства вклад системы транспорта кислорода и аппарата кровообращения в лимитирование физической работоспособности возрастает.

            Исследование гематологических параметров и показателей ЭХОКС дают важную информацию о влиянии спортивной тренировки на состояние различных систем организма спортсмена, состоянии здоровья, о физиологических механизмах оздоровительного эффекта физической тренировки.

            Цель нашего исследования – определить информативность основных гематологических показателей и важных параметров ЭХОКС у спортсменов в состоянии относительного покоя и выявить взаимосвязи между ними.

 

Материал и методы исследования

 

            Обследовали группу спортсменов МС; КМС (n=9),  спортсменов 1-2 разрядов (n=12). Контрольную группу представили практически здоровые мужчины, такого же возраста и антропометрических характеристик (n=12). Возраст испытуемых составлял, в среднем, - 19,75 года. Индекс массы тела исследуемых в обеих группах не превышал 22,68±0,58 кг/м².

            Эхокардиографическое исследование выполнено с помощью аппарата Aplio Toshiba SSA-700 A (770A) с секторным датчиком с фазированной решеткой PST-30BT (для кардиоисследований, частота 3,0 МГц). Во время обследования пациент лежал на спине или на левом боку. Обеспечив положение датчика с наилучшим отображением исследуемых структур и их функции, регистрировали эхокардиограмму (ЭХоКГ).             Общий анализ крови выполнен на гематологическом анализаторе СА620 – выполняющем полный автоматический анализ клеток крови. Кровь для исследования забирали из пальца утром, натощак.

 

Результаты исследования и их обсуждение

            Общепризнанный фактор лимитирования физической работоспособности – система транспорта кислорода, где центральное место занимает неспособность сердца увеличивать свою производительность (сердечный выброс) и, тем самым, обеспечивать достаточный уровень кровотока, а также доставку кислорода в рабочие мышцы. Ключевой причиной снижения ударного объёма, обеспечивающего лимитирование максимального сердечного выброса и доставку кислорода работающим мышцам, является более ранний выход на плато венозного возврата [8, с. 824-830]. Одним из факторов, ограничивающих центральное кровообращение и насосную функцию сердца, является гемоконцентрация и рост вязкости крови. Повышение текучести крови, особенно за счёт снижения агрегации эритроцитов, может снижать венозное сопротивление и увеличивать мышечный кровоток. Это указывает на важное физиологическое значение не только гематокрита, но и других гемореологических параметров.

            Гематокрит является главным детерминантом вязкости крови при всех напряжениях сдвига. Снижение вязкости крови при физической тренировке связывают с понижением гематокрита и вязкости плазмы [5, с. 147-156; 6, с. 33-40].

            Связь транспорта кислорода с вязкостью крови характеризуется прямой зависимостью вязкости крови от концентрации эритроцитов, т.е. кислородной ёмкости крови. Снижение (Hct) с одной стороны снизит кислородную ёмкость крови, а с другой – увеличит её транспортные возможности. По-видимому, существует оптимальная величина (Hct), когда наибольшая кислородная ёмкость сочетается с наибольшей транспортной способностью крови так, что результирующая кислородтранспортная способность выше [9, с. 659-664].

            В нашем исследовании при рассмотрении величин гематокрита и гемоглобина у спортсменов высокой квалификации (МС, КМС), спортсменов 1-2 разрядов и нетренированных лиц, у первых, можно отметить факт снижения Hct. Все изученные показатели  не выходили за пределы физиологической нормы, но в группе МС концентрация эритроцитов была ниже на 3,6%, гематокрит - на 2%, при практически равных с контрольной группой, величинах концентрации гемоглобина. При этом средний объём эритроцитов (MCV), показатель среднего содержания гемоглобина в эритроците (MCH) и средней концентрации гемоглобина в эритроците (MCHC) у высококвалифицированных спортсменов оказались выше на 2,3%;  3,7%; 1,76%  соответственно. Мы полагаем, что эти изменения у мастеров спорта, обусловлены активацией процессов разрушения эритроцитов в циркулирующей крови и синтезом ретикулоцитов в красном костном мозге, а  также  аутогемодилюцией – преобладающим накоплением объёма плазмы над общим объёмом эритроцитов.

            В группе МС оказался самый высокий ударный объем: он составлял 91,22±10,35 мл и был больше, чем у лиц контрольной группы на 37,3% (р<0,001). Такая же закономерность обнаружена и по величинам минутного объема крови (+35,4%; р<0,001), сердечного индекса (+30%; р<0,001) и  массе миокарда (+ 26,4% р<0,001).

            Проведённый корреляционный анализ выявил взаимосвязи между показателями МОК и ударного объема (УО)  [r=0,70; p<0,05], гематокритом (Hct) и конечно-систолическим размером левого желудочка (КСР) [r=0,740; p<0,05], конечно-систолическим объёмом левого желудочка (КСО) и гемоглобином (Hb) [r=0,756; p<0,05]. КСО тесно коррелировал с MCV [r=0,727; p<0,05], а также с MCH [r=0,720; p<0,05].

            Изменения КСО при адаптации аппарата кровообращения, достигаются с помощью механизмов саморегуляции, под влиянием экстракардиальных управляющих сигналов. Регулярные влияния реализуются в изменения систолического объёма, воздействуя на сократительную силу миокарда. При увеличении мощности сокращения, которого, возрастает КСО. Рост КСО обеспечивается использованием резервного объёма крови. При уменьшении мощности сердечного сокращения КСО крови падает. В сходных экстракардиальных условиях сказанное справедливо для функционирования желудочков и объёма венозного возврата.

            У спортсменов-разрядников концентрация гемоглобина (Hb) оказалась выше на 2%, MCH - на 1,9%, MCHC – на 2,85%  по сравнению с контрольной группой, MCV – меньше на 0,6%, Hct –  на 1%, соответственно. Прирост  гемоглобина у спортсменов 1-2 разрядов был обусловлен, в основном, повышением среднего содержания гемоглобина в эритроците (MCH) и средней концентрации гемоглобина в эритроците (MCHC), при практически равной RBC, по сравнению с не занимающимися спортом, наблюдалась тенденция к уменьшению MCV и Hct. Согласно литературным данным, при несколько сниженном MCV, наблюдаемом у зрелых клеток, отмечают повышенные значения МСНС [1, с. 39-41; 4, с. 49-54; 7, с. 145-152; 11, с. 27-38].

            Корреляционный анализ выявил менее тесные взаимосвязи между конечно-систолическим объёмом левого желудочка (КСО) и гемоглобином (Hb) [r=0,455], КСО и MCV [r=0,454], а КСО и MCH [r=0,519].

            Между МОК и ЧСС, МОК и ударным объемом никаких, сколько-нибудь значимых корреляций в этой группе, не отмечалось [r=0,06-0,16; p>0,05].

 Данные исследования представлены в таблицах 1 и 2.

Таблица 1

Данные описательной статистики общего анализа крови

 

Показатели

Контрольная группа

(n=12)

 

МС

 

(n=9)

 

Спортсмены 1-2 рразрядов

(n=12)

 

1. RBC /l

5,05±0,10

4,87±0,09

5,05±0,09

2. MCV f1

85,17±0,99

87,16±1,20

84,64±0,30

3. HCT%

43,15±0,72

42,40±0,93

42,72±0,60

4. HGB g/l

147,67±2,87

147,56±2,90

150,55±2,37

5. MCH(pg)

29,29±0,46

30,40±0,70

29,85±0,43

6. MCHC(g/1)

342,42±3,99

348,56±4,72

352,46±3,64

 

Таблица 2

Некоторые параметры гемодинамики и морфологии сердца

 

Показатели

Контроль

n=12

Мастера

n=9

1, 2 разряд

n=12

1.

ЧСС, уд./мин.

69,67±8,19

58,00±3,11***

66,27±4,24

2.

УО, мл

66,42±12,36

91,22±10,35***

66,76±8,39

3.

МОК, л/мин.

3,79±0,45

5,13±0,71***

4,18±0,30**

4.

СИ, л/мин./м²

2,00±0,25

2,60±0,40***

2,14±0,19

5.

ММЛЖ, гр.

147,42±19,02

186,33±30,02***

148,36±18,48

            **-  различия между группами статистически значимы при р≤0,01

            *** -  различия между группами статистически значимы при р≤0,001

            Кроме этого, нами были отмечены некоторые особенности показателей «белой» крови.

            Большой вклад в гемореологию вносят лейкоциты. В связи с их низкой способностью к деформации, лейкоциты могут депонироваться на уровне микроциркуляторного русла и значимо влиять на общее периферическое сопротивление сосудов. Кроме этого, форменные элементы белой крови формируют иммунитет и являются индикатором инфекционно-воспалительных процессов, приводящих к снижению работоспособности, ухудшению самочувствия и "срыву" адаптации.

            В таблице 3 представлены показатели белой крови в исследованных группах спортсменов.

Таблица 3

Некоторые показатели «белой» крови

 

Показатели

Контроль

n=12

Мастера

n=9

1, 2 разряд

n=12

LYMF (/1)

2,55±0,55

2,29±0,52

2,89±0,78

GRAN (/1)

3,98±1,14

3,61±0,53

4,21±1,25

WBC (/l)

7,52±2,54

6,40±0,91

7,48±1,41

MID (/1)

0,46±0,16

0,37±0,13

0,51±0,12

LYMF %

38,26±5,27

37,28±5,61

39,28±8,85

GRAN %

56,07±5,80

56,14±6,67

55,29±9,51

MID %

5,93±0,10

5,97±0,92

6,16±0,82

 

            Из данных таблицы 3 видно, что концентрация лейкоцитов (WBC) в группе мастеров спорта была меньше на 14,89%, концентрация лимфоцитов (LYMF), главных "патрулей" организма – меньше на 10,20%, концентрация гранулоцитов (GRAN)  -  клеток, помогающих лимфоцитам в осуществлении иммунных реакций – меньше на 9,30%, по сравнению с контрольной группой. Во всех случаях различия не носили статистически значимый характер. Значения лейкоцитарной формулы всех исследуемых групп не выходили за рамки нормальных величин, соответствующих здоровым молодым мужчинам.  В то же время, у высококвалифицированных спортсменов, нами отмечены многочисленные корреляции. УО отрицательно коррелировал с GRAN (%) [r=-0,786; p<0,05], СИ положительно с LYMF (/1) [r=0,727; p<0,05], ФВ с MID (/1)  [r=0,776; p<0,05].

            В группе спортсменов 1-2 разрядов зарегистрированы также многочисленные, но менее тесные взаимосвязи. Коэффициент ранговой корреляции между УО и MID (/1) составил [r=0,537; p<0,05],  MID (/1) с ΔS  (степенью укорочения волокон миокарда ЛЖ в систолу, (%)) [r=0,462; p<0,05]. Концентрация лимфоцитов в абсолютных значениях (LYMF,/1) была взаимосвязана с КДР [r=0,599; p<0,05], ЗСЛЖ [r=0,530; p<0,05], ПЖ [r=0,445; p<0,05], КСО [r=0,603; p<0,05]. В контрольной группе этих взаимосвязей отмечено не было.

            Воспалительные факторы являются важными составляющими в запуске гемопоэза, в частности лейкоцитарного: нейтрофилов, моноцитов, Т-лимфоцитов, натуральных киллеров [12, с. 1434-1441], особенно на начальных стадиях развития стволовой клетки. В процессы эритропоэза на ранних стадиях созревания  стволовой клетки вовлечены факторы воспалительной активности организма, которые, по-видимому, могут влиять на сосудистый тонус и гормональные оси, участвующие в эритропоэзе и водном обмене, изменяя уровень гематокрита через активность эритропоэза и объёма плазмы. С другой стороны, А.М.Petersen and B.K.Pedersen (2005) установили, что у физически активных лиц, уровень воспалительной активности может быть ниже, чем у малоактивных людей. Эти же исследователи предположили, что во время физической нагрузки в мышцах синтезируется Ил-6 и, возможно дополнительные не учтённые факторы, имеющие антивоспалительное действие. В другой работе показано, что интенсивная         физическая нагрузка увеличивает экспрессию противовоспалительных цитокинов, антивоспалительных цитокинов и Ил-6 в лейкоцитах крови [13, с. 1124-1130].

            Мельников А.А., Викулов А.Д. (2008) в своей работе установили, что введение   Ил-6 – индуктора синтеза и секреции СРП печенью, вызывает быстрое снижение уровня Hct на 10-20%. Главным образом, это происходит за счёт аутогемодилюции, накопления объёма плазмы без существенного изменения тотального объёма эритроцитов в сосудистом русле.

            Вероятно, не случайно, в нашем исследовании у спортсменов высокой квалификации, спортсменов 1-2 разрядов и нетренированных лиц, у первых, можно отметить факт снижения Hct. При этом при  практически равной RBC, средний объём эритроцитов (MCV), показатель среднего содержания гемоглобина в эритроците (MCH) и средней концентрации гемоглобина в эритроците (MCHC)  у высококвалифицированных спортсменов оказались выше на 2,3%; 3,7%; 1,76%  соответственно.

            Тромбоциты занимают важное место в клеточно-гуморальном взаимодействии систем гемостаза. Экспериментально доказано модулирующее воздействие лейкоцитов крови на функцию тромбоцитов при исследовании агрегации тромбоцитов цельной крови [2, с. 20-39]. Агрегация тромбоцитов сопровождается освобождением из а-гранул активаторного рецептора Р-селектина, который остаётся ассоциированным с плазматической мембраной тромбоцитов. Экспрессия на мембране лейкоцитов                 Р-селектин-связывающего гликопротеина-1 позволяет нейтрофилам присоединять тромбоциты. Связь нейтрофилов с тромбоцитами обеспечивает репаративные и воспалительные реакции, возникающие в ответ на повреждение. Нейтрофилы после связывания на мембранах способны секретировать адгезивные молекулы и интерлейкины.

                 В таблице 4 представлены показатели кровяных пластинок (platelets).

Таблица 4

Данные описательной статистики общего анализа крови (тромбоциты)

 

Показатели

Контроль

n=12

Мастера

n=9

1, 2 разряд

n=12

PLT (/l)

247,92±41,99

211,22±46,07*

246,82±56,19

MPV fl

8,20±0,74

8,68±0,64**

8,02±0,46

СОЭ (мм в час)

2,95±1,08

5,22±2,28***

3,64±2,01

             *-  различия между группами статистически значимы при р≤0,05

             **-  различия между группами статистически значимы при р≤0,01

             *** -  различия между группами статистически значимы при р≤0,001

            Из таблицы 4 видно, что концентрация тромбоцитов (PLT) у спортсменов высшей квалификации оказалась меньше, чем в контрольной группе на 14,80% (р<0,05), объём кровяных пластинок (MPV) больше на 5,53% (р<0,01).  В то же время, скорость оседания эритроцитов (СОЭ, мм) оказалась больше на 43,49%  (р<0,001).

            Таким образом, в группе МС, при наименьших по сравнению с контрольной группой значениях ОПСС, Hct, PLT отмечалась наиболее высокая СОЭ. Вероятно, не случайно, в нашем исследовании выявлена тесная взаимосвязь важнейших показателей гемодинамики, морфологии и концентрации лейкоцитов.

Выводы

1.                  Нормальной физиологической реакцией на физическую нагрузку является снижение гематокрита при повышении общего содержания эритроцитов в крови.

2.                  Важным механизмом снижения гематокрита  является аутогемодилюция – разжижение крови в результате роста объёма плазмы.

3.                  Одним из важнейших параметров сократительной функции  сердца, является сердечный выброс, интегральной характеристикой состояния кровообращения служит МОК, который вместе с УО составляют сердечный выброс. По результатам нашего исследования УО и МОК в группе мастеров спорта были больше, чем у лиц, не занимающихся спортом.

4.                  Проведённый корреляционный анализ в общей выборке показал наличие более тесных связей между параметрами гемодинамики и морфологии сердца в группе высококвалифицированных спортсменов.

5.                  В исследуемых группах МС и перворазрядников выявлена тесная взаимосвязь важнейших показателей    гемодинамики, морфологии и концентрации лейкоцитов.

 

Литература:

1.                  Викулов А.Д. Реологические свойства крови у спортсменов различной квалификации [Текст] / А.Д. Викулов // Теор. и практ. физич. культ., 1999. №1.       С. 39-41.

2.                  Долгов В.В., Свирин П.В. Лабораторная диагностика нарушений гемостаза [Текст] / В.В. Долгов, П.В. Свирин // ООО «Издательство «Триада», 2005. С. 20-39.

3.                  Мельников А.А., Викулов А.Д. Реологические свойства крови у спортсменов [Текст] / А.А. Мельников, А.Д. Викулов // Ярославль: ЯГПУ, 2008. С. 110-114.

4.                  Тхоревский В.И., Литвак А.Л. Взаимосвязь между потреблением кислорода и кровоснабжением сокращающихся мышц при работе разной мощности у лиц, тренирующих аэробную выносливость [Текст] / В.И. Тхоревский, А.Л. Литвак //  Теор. и практ. физич. культ., 2006. №4. С. 49-54.

5.                  Brun J.-F., Monnier J.F., Charpiat A. and Orsetti A. Longitudinal study of relationship between red cell aggregation atresr and Lactate responto exercise after training in young gymnasts [Text] / J.F. Brun, J.F., Monnier, A. Charpiat, A. Orsetti  // Clin. Hemorheol. 1995. V. 15. №2. P. 147-156.

6.                  Ernst E., Matrai A. Regular exercise increased blood fluidity [Text] /  E. Ernst, A. Matrai // Rev. Port. Hemorheol., 1987. V. 1. P. 33-40.

7.                  Fallon K.E. Utility of hematological and iron-related screening in elite athletes [Text] / K.E. Fallon  // Clin. J. Sport. Med., 2004. 14(3). P. 145-152.

8.                  J.Gonzalez-Alonso J. and Calbet J.A. Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans [Text] / J.Gonzalez-Alonso  and J.A.Calbet // Circulation.2003.V. 107.-P. 824-830.

9.                  Messmer K. Hemodilution [Text] / K. Messmer // Surg. Clin. North. Am. V. 5. 1982.     P. 659-664.

10.              Petersen A.M. and Pedersen B.K. The anti-inflammatory effect of exercise [Text] / А.М.Petersen and B.K.Pedersen // J. Appl. Physiol.2005. V.98. P.1154-1164.

11.              Shaskey D.J., Green G.A. Sport hematology [Text] / D.J. Shaskey, G.A. Green // Sports Med., 2000. 29(1). P. 27-38.

12.              Van Gameren M., Willemse P.H.., Mulder N.H. et al. Effects of recombinant human interleukin-6 in cancer patients: A phase 1-11 study [Text] / M.Van Gameren,              P.H. Willemse , N.H. Mulder // Blood. 1994. V. 84. P. 1434-1441.

13.              Zaldivar F., Wang-Rodriguez J., Nemet D. et al. Constitutive pro- and anti-inflammatory cytokine and growth factor response to exercise in leukocytes [Text] / F. Zaldivar,           J. Wang-Rodriguez , D. Nemet // J. Appl. Physiol. 2006. V.100. P. 1124-1130.

Основные термины (генерируются автоматически): концентрации гемоглобина, средней концентрации гемоглобина, вязкости крови, высококвалифицированных спортсменов, среднего содержания гемоглобина, контрольной группой, объёма плазмы, факт снижения hct, А.М.petersen and b.k.pedersen, средний объём эритроцитов, спортсменов высокой квалификации, группе МС, белой крови, транспорта кислорода, сокращения КСО крови, Похожая статья, объёмом левого желудочка, Снижение вязкости крови, детерминантом вязкости крови, зависимостью вязкости крови.

Обсуждение

Социальные комментарии Cackle
Задать вопрос