Сравнение общих положений расчета стальных конструкций по Еврокоду 3 EN 1993–1-1 и СП 16.13330.2017 | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 25 января, печатный экземпляр отправим 29 января.

Опубликовать статью в журнале

Авторы: ,

Рубрика: Технические науки

Опубликовано в Молодой учёный №21 (207) май 2018 г.

Дата публикации: 23.05.2018

Статья просмотрена: 3168 раз

Библиографическое описание:

Белавина, К. Э. Сравнение общих положений расчета стальных конструкций по Еврокоду 3 EN 1993–1-1 и СП 16.13330.2017 / К. Э. Белавина, Е. А. Любчич. — Текст : непосредственный // Молодой ученый. — 2018. — № 21 (207). — С. 22-24. — URL: https://moluch.ru/archive/207/50680/ (дата обращения: 16.01.2025).



В статье сравниваются основные принципы российских и европейских норм для проектирования стальных конструкций на основе нормативных документов и исследований по данной проблеме.

Ключевые слова: стальные строительные конструкции, Еврокод 3, СП Стальные конструкции, расчет стальных конструкций.

В строительной отрасли давно встают вопросы о необходимости согласования российских и европейский строительных норм. Это связано с тем, что современные тенденции строительства направлены на сотрудничество с международными компаниями и обмен опытом. В условиях глобализации, в строительство крупных проектов в России все чаще вовлекают иностранных инвесторов, проектные организации, девелоперов. В пользу применения Еврокодов есть весомые аргументы: существенная экономия металла, снижение стоимости проектных и монтажных работ.

Необходимость согласования норм подтверждается работой на рынке конкретных крупных фирм. Например, компания ArcelorMittal выпускает особо прочный стальной прокат, необходимый для применения при строительстве уникальных зданий и сооружений. Данный прокат имеет разную структуру в «теле» материала и по краям. СП [4] не дает метода измерения прочности для данного случая, а Еврокод [2] — дает. По подобным причинам каждый раз, когда на российском рынке появляется новая иностранная продукция, появляется необходимость проводить научное исследование, чтобы установить, соответствует ли конкретная продукция российским нормам, что, как следствие, замедляет процесс строительства.

В российских нормах степень сопротивления металла хрупким разрушениям принято устанавливать методом ударной вязкости, в то время как в европейских — на образце с острым надрезом, поэтому нормы расчета и таблицы коэффициентов могут отличаться. Кроме того, считается, что Еврокоды разрабатываются с учетом анализа статистики последних катастроф и аварий, которые происходят в разных странах мира. Однако, разнообразие видов разрушений современных зданий и сооружений из металлических конструкций трудно себе представить.

Национальные объединения строителей и проектировщиков уже начали проводить работу по техническому анализу большинства частей Еврокодов. Результаты говорят о том, что по большому счету, между Еврокодами и СП гораздо больше сходства, чем различий. Рассмотрим некоторые результаты сопоставительных расчетов.

Согласно [5] при сопоставительном расчете металлоконструкций многопролетного одноэтажного здания выяснилось, что по расходу стали на прогоны, балки и колонны разница варьируется от 12 % до 16 % с перерасходом по Еврокоду. При проведении сопоставительного расчета стальных конструкций каркаса двухпролетного одноэтажного здания с мостовыми кранами показатели перерасхода стали составили 13–30 % по сравнению с расчетами по российским нормам. Это объясняется тем, что снеговые и ветровые нагрузки по Еврокоду значительно превышают нагрузки, рассчитанные по нормам СП. По снегу превышение составляет почти двукратное, по ветру — более 30 %.

При сопоставительном расчете стальных вертикальных цилиндрических резервуаров объемом 50 000 м3 со стальной стационарной сферической крышей выяснилось, что в списке возможных национально определяемых параметров EN 1991–1-3 [2] отсутствует снеговая нагрузка на сферические купольные покрытия. При этом в Еврокодах запрещается менять (дополнять, изменять) список национально определяемых параметров. Следовательно, проектирование резервуаров с применением Еврокода невозможно.

Если более подробно рассматривать подход к расчету элементов, единственный раздел СП [4], где прослеживается разница в расчете элементов с сечениями разных классов — это расчет изгибаемых элементов.

Фундаментальный подход один и тот же, вытекающий из сопротивления материалов — необходимо найти максимальное напряжение в сечении и сравнить его с пределом текучести. Однако, прослеживаются некоторые различия в деталях:

  1. В проверке по напряжениям при сложном напряженном состоянии СП [4] допускает 15 % превышение Ry, а Еврокод 3 [1] нет.
  2. В Еврокод 3 [1] есть указания по расчету на кручение, в частности, о возможности пренебречь свободным кручением при расчете сечений открытого профиля.

Относительно пластичности все наоборот. Методики расчета абсолютно различные, но в Еврокод 3 [1] она значительно проще, охватывает больше сечений и, кроме того, учитывает еще и кручение.

При проверке в пластике используется пластический момент сопротивления Wpl, который соответствует образованию пластического шарнира, т. е. исчерпанию несущей способности сечения. В российских нормах же используется коэффициент «c», соответствующий максимальной остаточной деформации после разгрузки 3Ry/E. Если Wpl можно для любого профиля взять из набора его геометрических характеристик (он равен удвоенному статическому моменту, который фигурирует в формуле Журавского), то алгоритм получения «с» требует длительных операций, интерполяции и прочего. При этом добавочная величина от 3Ry/E по сравнению с Wpl составляет последнее слагаемое в числителе. Максимальное различие составляет около 2 %, поэтому все сложности математических раскладок теряют актуальность и расчет по Еврокод 3 [1] более оптимален при расчете на изгиб.

Помимо этого, среди различий, в СП [4] в отличии от Еврокода учитывается бимомент. В Еврокод 3 [1] упоминание о нем есть и даже в разделе «Обозначения» есть символы для него и напряжений от него. Есть также указание, что нормальные напряжения от бимомента существуют, и что в пластической стадии нужно учитывать составляющую от бимомента, полученную из упругого расчета, но без упоминания конкретных формул. В СП [4] для сечений 1-го класса формула содержит бимомент, а для 2-го и 3-го — нет. Что не совсем логично, так как только одна часть сечений, и соответственно, элементов, рассчитывается с учетом бимомента. Поэтому влияние бимомента на прочность элементов ставиться под вопрос, как и необходимость его расчета.

Таким образом, расчет по СП 16.13330.2017 Стальные конструкции и Еврокоду 3 EN 1993–1-1–2009 обладает как различиями, так и сходствами, и для дальнейшего согласования требует доработки на уровне разработчиков норм как с одной, так и с другой стороны.

Литература:

  1. ТКП EN 1993–1-1–2009. Еврокод 3. Проектирование стальных конструкций. Часть 1–1. Общие правила и правила для зданий / Минстройархитектуры Республики Беларусь. — Минск, 2009.
  2. ТКП EN 1991–1-3–2009. Еврокод 1. Воздействия на конструкции. Часть 1–3. Общие воздействия. Снеговые нагрузки / Минстройархитектуры Республики Беларусь. — Минск, 2010.
  3. ТКП EN 1991–1-3–2009. Еврокод 1. Воздействия на конструкции. Часть 1–4. Общие воздействия. Ветровые воздействия / Минстройархитектуры Республики Беларусь. — Минск, 2010.
  4. СП 16.13330.2017. Стальные конструкции/ Минстрой России. — Москва, 2017.
  5. Пугачев, С. В. Применение Еврокодов в строительстве / С. В. Пугачев // СтройПРОФИ. — 2014. — № 21. — С. 16–21.
Основные термины (генерируются автоматически): расчет, конструкция, норма, расчет элементов, сопоставительный расчет.


Ключевые слова

стальные строительные конструкции, Еврокод 3, СП Стальные конструкции, расчет стальных конструкций

Похожие статьи

Особенности проектирования монолитных железобетонных перемычек по Еврокоду СН РК EN 1998-1:2004/2021

Проанализированы методы проектирования железобетонных перемычек при стеновой схеме каркаса в зонах повышенной сейсмической активности,

Расчет монтажного стыка клеёных деревянных конструкций с применением композитных материалов в программном комплексе ANSYS

В работе проведен расчет монтажного стыка отправочных марок полуарок в программном комплексе ANSYS с помощью метода конечных элементов (МКЭ) с использованием композитным материалов (базальтопластиковые стержни и углепластиковые пластины). В результат...

Сравнение различных методик расчета трубобетонных колонн круглого сечения на центральное сжатие

В статье приведен пример расчета трубобетонной колонны круглого сечения на центральное сжатие тремя различными способами, а также проведен краткий анализ полученных результатов. Первый расчет выполнен по СП 266.1325800.2016, две другие методика описа...

Сравнительный анализ расчета шарнирного узла крепления балки к колонне методом конечных элементов с расчетом по серии

В настоящей статье будет рассмотрен расчет шарнирного узла соединения стальной балки к колонне согласно серии 2.440–2 Выпуск 1. «Шарнирные узлы балочных клеток и рамные узлы примыкания ригелей к колоннам» [1]. Данный узел будет замоделирован и рассч...

Необходимость расчета элементов стальных конструкций согласно EN 1993–1-9

В статье авторы пытаются определить необходимость расчета элементов стальных конструкций согласно EN 1993–1-9.

Анализ методик расчета конструкций из CLT в разных странах

В статье рассматриваются способы расчета конструкций из древесины перекрестно клееной по различным методикам, используемым в разных странах в настоящее время.

Сравнение величин снеговых мешков, вычисленных по СП 20.13330.2011 и СП 20.13330.2016, для участков покрытий возле парапетов

После вступления в силу 1 августа 2020 г. Постановления Правительства РФ от 4 июля 2020 г. N 985 [1], обязательным к применению сводом правил «Нагрузки и воздействия», стал СП 20.13330.2016 [2]. Он заменил собой СП 20.13330.2011 [3], ранее являвшийся...

Анализ проектирования железобетонных конструкций зданий для строительства

В статье поднимается вопрос о необходимости анализа проектирования железобетонных конструкций зданий для строительства. Материалы статьи содержат краткую информацию изучения проектирования железобетонных конструкций, и использования сборно-монолитных...

Результаты лабораторных исследований стяжек из сталей по ГОСТ 380–2005 и сталей по ГОСТ 1050–2013 быстросборных модулей

Статья посвящена изучению металлических стяжек из сталей по ГОСТ 380–2005 и сталей по ГОСТ 1050–2013 для сборки элементов моделей и их деформаций при лабораторных исследованиях быстросборных модулей контейнерного типа. Сравнению величин деформаций в ...

Некоторые результаты расчета фермы покрытия машинного зала согласно EN 1993–1-1 и СП 16.13330

В статье автор анализирует результаты подбора сечений фермы покрытия машинного зала атомной электростанции в Финляндии согласно EN 1993–1-1 и СП 16.13330 на примере опорного раскоса.

Похожие статьи

Особенности проектирования монолитных железобетонных перемычек по Еврокоду СН РК EN 1998-1:2004/2021

Проанализированы методы проектирования железобетонных перемычек при стеновой схеме каркаса в зонах повышенной сейсмической активности,

Расчет монтажного стыка клеёных деревянных конструкций с применением композитных материалов в программном комплексе ANSYS

В работе проведен расчет монтажного стыка отправочных марок полуарок в программном комплексе ANSYS с помощью метода конечных элементов (МКЭ) с использованием композитным материалов (базальтопластиковые стержни и углепластиковые пластины). В результат...

Сравнение различных методик расчета трубобетонных колонн круглого сечения на центральное сжатие

В статье приведен пример расчета трубобетонной колонны круглого сечения на центральное сжатие тремя различными способами, а также проведен краткий анализ полученных результатов. Первый расчет выполнен по СП 266.1325800.2016, две другие методика описа...

Сравнительный анализ расчета шарнирного узла крепления балки к колонне методом конечных элементов с расчетом по серии

В настоящей статье будет рассмотрен расчет шарнирного узла соединения стальной балки к колонне согласно серии 2.440–2 Выпуск 1. «Шарнирные узлы балочных клеток и рамные узлы примыкания ригелей к колоннам» [1]. Данный узел будет замоделирован и рассч...

Необходимость расчета элементов стальных конструкций согласно EN 1993–1-9

В статье авторы пытаются определить необходимость расчета элементов стальных конструкций согласно EN 1993–1-9.

Анализ методик расчета конструкций из CLT в разных странах

В статье рассматриваются способы расчета конструкций из древесины перекрестно клееной по различным методикам, используемым в разных странах в настоящее время.

Сравнение величин снеговых мешков, вычисленных по СП 20.13330.2011 и СП 20.13330.2016, для участков покрытий возле парапетов

После вступления в силу 1 августа 2020 г. Постановления Правительства РФ от 4 июля 2020 г. N 985 [1], обязательным к применению сводом правил «Нагрузки и воздействия», стал СП 20.13330.2016 [2]. Он заменил собой СП 20.13330.2011 [3], ранее являвшийся...

Анализ проектирования железобетонных конструкций зданий для строительства

В статье поднимается вопрос о необходимости анализа проектирования железобетонных конструкций зданий для строительства. Материалы статьи содержат краткую информацию изучения проектирования железобетонных конструкций, и использования сборно-монолитных...

Результаты лабораторных исследований стяжек из сталей по ГОСТ 380–2005 и сталей по ГОСТ 1050–2013 быстросборных модулей

Статья посвящена изучению металлических стяжек из сталей по ГОСТ 380–2005 и сталей по ГОСТ 1050–2013 для сборки элементов моделей и их деформаций при лабораторных исследованиях быстросборных модулей контейнерного типа. Сравнению величин деформаций в ...

Некоторые результаты расчета фермы покрытия машинного зала согласно EN 1993–1-1 и СП 16.13330

В статье автор анализирует результаты подбора сечений фермы покрытия машинного зала атомной электростанции в Финляндии согласно EN 1993–1-1 и СП 16.13330 на примере опорного раскоса.

Задать вопрос