Экспериментально определены основные характеристики ПвИ коэффициент ионизации для радикалов , и при диссоциативной ПвИ многоатомных молекул имипрамина, амитриптилина, новокаина, тетраэтиламмоний хлорида и лидокаина.
Ключевые слова: поверхностная ионизация, нестационарные процессы, метод модуляции напряжения, кинетические характеристики, время жизни, константы скорости, энергия активации.
The basic characteristics of surface ionization have been experimentally defined — the ionization coefficient for the radicals , and for polyatomic molecules of imipramine, amitriptyline, procaine, tetraethylammonium chloride and lidocaine.
Key words: surface ionization, non-stationary processes, modulation voltage method, kinetic characteristics, lifetime, speed constants, activation energy.
Поверхностная ионизация (ПвИ) многоатомных частиц к настоящему времени изучена достаточно хорошо: выявлены основные закономерности процессов адсорбции, диссоциации исходных молекул с образованием ионизируемых продуктов для разных классов органических соединений, получены выражения для ионных токов [1–3].
Пусть на однородный эмиттер поступает постоянной во времени поток молекул , который на поверхности эмиттера частично превращается в видов частиц нового химического состава. Если в адсорбированном слое образуются частицы, эффективно ионизирующиеся путем ПвИ, то при действии напряжения, запирающего десорбцию ионов в течение времени , концентрация таких частиц в адсорбированном слое должна возрастать, как показано на рис. 1.б. При изменении полярности электрического поля () концентрация адсорбированных частиц начинает падать. Поэтому в коллекторной цепи возникает всплеск ионного тока частиц с последующим уменьшением тока, как показано на рис.1.в.
Изменение поверхностной концентрации определяется уравнениям непрерывности
(1)
где - поток частиц, поступающих на поверхность, - температура адсорбента и - вероятность убыли частиц с поверхности адсорбента или сумма констант скоростей всех гетерогенных процессов, влияющих на поверхностную концентрацию ионизируемых частиц. В случае ПвИ атомов определяется суммой констант скорости десорбции атомов в заряженном и нейтральном состояниях, где и - энергии активации десорбции, и — энтропийные множители.
Рис. 1. Иллюстрация к методу модуляции напряжения: а) форма модулирующего напряжения; б) изменение во времени концентрации адсорбированных частиц на поверхности эмиттера; в) форма импульсов тока десорбирующихся ионов;
Обнаружение и выявление основных закономерности ПвИ многоатомных частиц — молекул и радикалов органических и биоорганических соединений позволили развить метод модуляции напряжения (ММН) применительно к многоатомным частицам. Было найдено, что при ПвИ исходных молекул релаксация ионного тока как и в случае ПвИ атомов экспоненциально, но определяется не только константой скорости десорбции исходных молекул в заряженном и нейтральном состояниях, но и константами скоростей всех гетерогенных реакций приводящих к убыли молекул которые в узком температурном интервале можно представить как . Поэтому по графикам можно определять среднее время жизни молекул на поверхности адсорбента
.
В случае ПвИ продуктов химических превращений исходных молекул на поверхности (например, наиболее часто встречаемый случай ПвИ органических соединений — ионизация продуктов диссоциации исходных молекул) изменение поверхностной концентрации - х частиц следует уравнению непрерывности
(2)
в котором по аналогии с , а эффективный поток - х частиц на поверхность , где — концентрация исходных молекул, а — константа скорости диссоциации исходной молекулы с образованием - ой частицы. Решение этого уравнения как в случае ММН, показало, что изменение тока ионов - х частиц не следует экспоненциальному закону и зависит как от , так и от . Однако, в случае ММН можно выделить случаи, когда изменение тока изменение поверхностной концентрации -х частиц описывается экспонентой
Для этого необходимо, чтобы при изменении полярности электрического поля в ММН не было увеличения поверхностной концентрации исходных молекул .
Для этого должно быть , например, когда исходные молекулы не десорбируются в виде ионов из-за относительно высокого значения потенциал ионизации и превращения их на поверхности в другие частицы, ионизируемые путем ПвИ. Это часто встречаемый в практике ПвИ органических соединений случай, когда в виде ионов с большой эффективностью десорбируются продукты диссоциации исходных молекул и не десорбируются [3]. Поэтому в работах [4] ММН были экспериментально определены кинетические характеристики десорбции ряда многоатомных частиц, представленных в табл.1. и находящихся в хорошем согласии с результатами изучения ПвИ этих частиц в стационарных условиях (величины плотности токов ионов, их температурные зависимости и др.).
В этом случае определяются не истинные или , а эффективные значении учитывающие диссоциации, меньшие соответствующих истинных величин и . Совпадение возможно только при . Таким образом, при использовании ММН, в случае ионизации частиц, которые одновременно с ионизацией на поверхности испытывают химические реакции преобразования, экспериментально определяют заниженный относительно истинного коэффициента ПвИ. Тем не менее, эти величины представляют интерес, поскольку в этом методе по спаду ионного тока определяют и, измеряя , можно получить константу скорости термической десорбции и соответственно среднее время жизни таких частиц по отношению к испарению их в заряженном состоянии , так как
(3)
Проводя такие измерения для ряда температур, можно по графикам Аррениуса получить истинную энергию связи многоатомных частиц с подложкой и предэкспоненциальных множителей в кинетическом уравнении термодесорбции ионов.
В связи с высокой эффективностью поверхностной ионизации ряда органических соединений, возник вопрос о возможности нахождения кинетических характеристик термической десорбции образующихся ионов.
В работе приведены результаты экспериментального исследования диссоциативной поверхностной ионизации многоатомных молекул имипрамина, амитриптилина, новокаина, тетроэтиламмоний хлорида и лидокаина в стационарных условиях модуляции напряжения. Полученные ПвИ масс-спектры показали, что при адсорбции молекул амитриптилина и имипрамина базовыми линиями являются линии ионов радикалов c , а при адсорбции молекул новокаина, тетраэтиламмоний хлорида и лидокаина базовыми являются линии ионов радикалов с и с .
Все исследованные радикалы — продукты реакции диссоциации молекул ионизируются с высокой эффективностью, их коэффициент ПвИ , определенный методом модуляции напряжения, составлял в интервале температур эксперимента.
Молекулярные ионы отсутствуют, это означает, что выполняется условие . Поэтому спад ионного тока в условиях модуляции напряжения определяется кинетикой термодесорбции ионов. Полученные ММН значения констант скорости термодесорбции и энергии активации для десорбции ионов c при адсорбции молекул имипрамина и амитриптилина, и ионов с и с при адсорбции молекул новокаина, тетраэтиламмоний хлорида и лидокаина хорошо согласуются между собой и с результатами, полученными для десорбции тех же ионов, полученных при адсорбции других молекул. Это подтверждает одно из основных условий равновесного процесса ПвИ — степень (коэффициент ) ПвИ одних и тех же частиц на одной и той же поверхности эмиттера одинаков и не зависит от способа образования этих частиц на поверхности эмиттера.
В ММН всплески ионных токов наблюдались при адсорбции всех исследованных органических молекул. Однако, эти всплески токов наблюдались только в узком температурном интервале (). Но следует отметить, что в этом интервале температур временные зависимости тока ионов были экспоненциальными и изменялись только при изменении температуры. При результаты были повторяемые.
Определение коэффициент поверхностной ионизации многоатомных молекул с поверхностью окисленного вольфрама
Таблица 1
Вещества |
Десорбирующие ионы |
Диапазон температуры (K) |
|
Имипрамин
|
|
730–788 |
0.86 |
Амитриптилина |
|
720–788 |
0.70 |
Лидокаин
|
|
785- 835 |
0.72 |
Тетраэтиламмоний хлорида
|
|
720–788 |
0.75 |
Тетраэтиламмоний хлорида
|
685- 730 |
0.70 |
|
Новокаин
|
|
690–762 |
0.70 |
Новокаин
|
795- 830 |
0.65 |
В работе исследованы нестационарные процессы диссоциативной ПвИ многоатомных молекул имипрамина , амитриптилина , новокаина , тетраэтиламмоний хлорида и лидокаина методам модуляции напряжения. Определены коэффициенты ПвИ радикалов , и продуктов реакции диссоциации исходных молекул .
Литература:
- Rakhmanov G. T., Rasulev U.Kh., Saidumarov I. M. Application of surface ionization to determine rate constant and activation energy of dissociation reactions of nitrogen base polyatomic molecules on W oxides // Surface and Interface Analysis. — 2006, Volume 38. — P. 219–223.
- Расулев У. Х., Рахманов Г. Т., Саидумаров И. М. Определения кинетических характеристик термодесорбции атомов и ионов Cs при адсорбции молекул CsCl на грани (100) монокристалла Mo // Узбекский физический журнал. — Ташкент, 1997. — № 4. — С. 85–86.
- Рахманов Г. Т., Саидумаров И. М., Худоева Х. К. и академик Расулев У. Х. Определение кинетики диссоциативной поверхностной ионизации молекул новокаина и лидокаина на окислах вольфрама // Доклады АНРУз. — Ташкент, 2008. — № 5. — С. 26–29.
- Рахманов Г. Т., Сайдумаров И. М., Раджабов А. Ш. Оценка потенциал ионизации некоторых радикалов при диссоциативной поверхностной ионизации молекул органических соединение. ЎзМУ хабарлари, Тошкент, “Университет”, 2013. С.185–187.