Преимущество и недостатки фотопреобразователей | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 27 апреля, печатный экземпляр отправим 1 мая.

Опубликовать статью в журнале

Автор:

Рубрика: Физика

Опубликовано в Молодой учёный №36 (170) сентябрь 2017 г.

Дата публикации: 11.09.2017

Статья просмотрена: 2167 раз

Библиографическое описание:

Кенжаев, З. Т. Преимущество и недостатки фотопреобразователей / З. Т. Кенжаев. — Текст : непосредственный // Молодой ученый. — 2017. — № 36 (170). — С. 3-5. — URL: https://moluch.ru/archive/170/45596/ (дата обращения: 18.04.2024).



В настоящее время особое внимание уделяется учету использованию кремниевых фотопреобразователей в условиях жаркого климата. На мировом рынке производство кремния растет в последнее время примерно 30 % ежегодно, но этого недостаточно для обеспечения потребностей производителей фотоэлектрических и полупроводниковых приборов. Дефицит кремния приводит к росту цен на него.

Основными факторами, обусловившими развитие возобновляемых источников энергии, являются следующие [1]:

‒ сохранение окружающей среды и обеспечение экологической безопасности;

‒ решение социальных задач, улучшение качества жизни населения;

‒ обеспечение энергетической безопасности стран мира;

‒ сохранение запаси энергоресурсов для будущих поколений.

В настоящее время слабое применение солнечной энергетики обусловлено следующими ее недостатками:

‒ низкая эффективность преобразования света в электрический ток (не более 20 %)

‒ отсутствие возможности получения электроэнергии ночью, при облачности и с малым количеством солнечных дней в году

‒ отсутствие высокоэффективных и экологически безопасных источников накопления энергии (в настоящее время используются аккумуляторы)

Как правило энергетические характеристики фотоэлементов восновном определяются следующими параметрами: интенсивностью солнечного излучения, величиной нагрузки, рабочей температурой.

На эффективность фотоэлементов исолнечных панелей из них влияют целый ряд факторов: погодные и климатические условия, смена дня и ночи, неравномерность освещения, рост температуры, загрязнение, необратимые потери.

В настоящее время метод фотоэлектрического преобразования в мире стал одним из приоритетных направлений получения солнечной электроэнергии. Это обусловлено тем, что он обеспечивает: максимальную экологическую чистоту преобразования энергии, возможность получения энергии практически в любом районе, значительный срок службы, малые затраты на обслуживание, независимость эффективности преобразования солнечной энергии от установленной мощности.

Современные солнечные элементы (СЭ) ипанели из них, солнечные электростанции удовлетворяют комплексу требований: высокая надёжность при сроке эксплуатации до 30 лет, доступность сырья и возможность организации массового производства, приемлемые сроки окупаемости инвестиций на создание солнечных электростанций, минимальные расходы на эксплуатацию и техническое обслуживание гелиоэнергетических мощностей, высокая эффективность работы.

Электрическая мощность стационарно установленной СБ зависит от:

‒ изменения угла падения солнечных лучей, об условленного суточным и сезонным перемещением Солнца по небосводу для данной широты местности;

‒ изменения интенсивности солнечного излучения в зависимости от прозрачности атмосферы и облачности;

‒ суточных и сезонных изменений температуры окружающего воздуха;

‒ разогрева фотоэлектрических преобразователей при возрастании светового потока.

Основными недостатками солнечных фотоэлектрических станций являются (СФЭС) [2]:

‒ зависимость уровня вырабатываемой энергии от времени суток и степени освещенности, что требует принятия дополнительных мер для накопления электроэнергии от СЭ и ее последующего использования в темное время суток и в условиях недостаточной освещенности высокая;

‒ высокая стоимость фотоэлементов, преобразующих солнечную радиацию в электроэнергию постоянного тока;

‒ применение инверторов, осуществляющих преобразование электро-энергии постоянного тока в электроэнергию переменного тока, понижают их коэффициента полезного действия (КПД);

‒ наличие аккумуляторных батарей, применяющих в качестве резервных источников, и обеспечивающих бесперебойное электроснабжение потребителей, значительно повышает стоимость солнечной электростанции.

Эти недостатки приводят к тому, что в настоящее время стоимость электроэнергии, вырабатываемую с помощью СФЭС, превышает в несколько раз стоимость электроэнергии, вырабатываемую от традиционных источников электроэнергии.

Ключ к повышению эффективности солнечных батарей лежит в уменьшении необратимых потерь солнечной энергии в процессе взаимодействия солнечного света и вещества, из которого изготовлены фотоэлементы. Уменьшение необратимых потерь в фотоэлементах приведет к увеличению их КПД. В среднем, КПД солнечных эксплуатируемых сейчас панелей не превышает 15–20 %. Увеличение КПД всего на один или два процента уже считаются хорошим результатом. В средствах массовой информации можно найти информацию о том, что КПД отдельных фотоэлементов, измеренный в лабораторных условиях, приближается к 45 %.

Например, всостав фотоэлектрической системы входит [3]:фотоэлектрический модуль, преобразующий солнечный свет в электроэнергию; — аккумулятор, накапливающий энергию. Обычно используются герметичные и необслуживаемые аккумуляторы, срок службы которых не превышает 10 лет; — контроллер, который оптимизирует уровень зарядки/разрядки аккумулятора, автоматически включает освещение в ночное время и выключает в световой период; — инвертор, преобразующий постоянный ток в переменный; — осветительный блок, — включающий плафон и лампу. Безусловно, все электронные приборы фотоэлектрической системы снабжены защитой от короткого замыкания, перегрева и перегрузки, что обеспечивает надежность и эффективность работы системы.

Исходя из перечисленных преимуществ и недостатков, можно сказать, что уже сегодня применение солнечной энергии является экономически рентабельным в некоторых специфических областях энергетики, где необходимо производство относительно небольшого количества электроэнергии:

‒ в районах, удаленных от энергосети;

‒ работа небольших электронных устройств с автономным питанием;

‒ экологически чистые электростанции в курортных районах и другие.

В заключении хотим отметить, что: — в практических применении солнечных элементов и батарей есть не которые преимущество и недостатки. — в использовании солнечных элементов и батарей надо учитывать влияние внешних воздействий. — интенсивность и температура влияет на основных параметров солнечных элементов и батарей, и определяет режим работы. — низкий коэффициент преобразования усугубляется факторами, влияющими на производительность солнечных элементов и батарей, Погодные и климатические условия, интенсивности светового потока, смена дня и ночи, ориентация поверхности монтажа, угла наклона конструкции, затенение, температура, загрязнение и затемнение отдельных участков или всего модуля, необратимые потери.

Литература:

  1. Академик Р. А. Захидов, Возобновляемая энергетика в Узбекистане: проблемы и перспективы.// Республиканская конференция по теме Источники альтернативных энергий и актуальные проблемы их использования//Бухара-2015.
  2. У. А. Евгеньевич. Солнечная энергетика: состояние и перспективы. Научный журнал КубГАУ, № 98(04), 2014 года
  3. В. А. Алехин. Области применения солнечной энергетики. // Нетрадиционные возобновляемые источники энергии // Известия ТулГУ. Технические науки. 2013. Вып. 12. Ч. 2.
Основные термины (генерируются автоматически): солнечная энергия, батарея, настоящее, недостаток, световой поток, смена дня, солнечное излучение, стоимость электроэнергии, фотоэлектрическая система, элемент.


Похожие статьи

Способы получения электрики и тепла из солнечного излучения

- Фотоэлектрический способ. По мнению экспертов, будущее солнечной энергии с прямым преобразованием солнечного излучения в электрический ток с помощью полупроводниковых фотоэлементов — солнечных батарей.

Солнечная энергия и ее использование | Статья в журнале...

Использование солнечной энергии. Солнечная радиация может быть преобразована в полезную энергию, используя так называемые

К активным солнечным системам относятся солнечные коллекторы. Также в настоящее время ведутся разработки фотоэлектрических...

Эффективность преобразования солнечной энергии

Преобразовав солнечную энергию в электричество, можно обеспечивать освещение зданий, приводить в движение элементы

Фотоэлектрические преобразователи солнечной батареи теряют свою эффективность на 0,5% при изменении температуры на 1 градус Цельсия.

Люминесцентный солнечный концентратор в решении актуальных...

Солнечная энергия имеет множество преимуществ в сравнении с углеродными источниками энергии.

В итоге стоимость такой конструкции приближается к стоимость каскадных фотоэлектрических систем.

Исследование эффективности использования солнечной...

Стандартная солнечная фотоэлектрическая станция состоит из следующих элементов: солнечной батареи, контроллера, аккумулятора. Рис. 1. Схема снабжения солнечной энергией.

Эффективность использования солнечных батарей...

‒ привести и проанализировать результаты расчета мощности солнечного излучения и выработки энергии

Рис. 1. Солнечная батарея. Выработка фотоэлектрической панели определяется по формуле (1)

Обзор солнечных панелей для систем автономного питания

солнечное излучение, панель, солнечная энергия, фотопреобразование энергии, солнечная панель, солнечная батарея, полупроводниковый материал, композитная пленка, годовая выработка, солнечная энергетика.

Анализ эффективности съёма энергии солнца в системе...

Процессы при возникновении солнечной энергии. Полезная энергия может преобразовываться с помощью Солнечной радиации, используя такие системы как активная и пассивная. В данный момент постоянно совершенствуются новые разработки фотоэлектрических систем...

Альтернативные источники солнечной энергии...

Ключевые слова: электроэнергетика, альтернативные источники энергии, солнечная энергия, солнечные батареи, жилые дома.

Поскольку в настоящее время аккумуляторные системы, срок службы которых от трех до шести лет, в разы дороже самих солнечных батарей.

Способы получения электрики и тепла из солнечного излучения

- Фотоэлектрический способ. По мнению экспертов, будущее солнечной энергии с прямым преобразованием солнечного излучения в электрический ток с помощью полупроводниковых фотоэлементов — солнечных батарей.

Солнечная энергия и ее использование | Статья в журнале...

Использование солнечной энергии. Солнечная радиация может быть преобразована в полезную энергию, используя так называемые

К активным солнечным системам относятся солнечные коллекторы. Также в настоящее время ведутся разработки фотоэлектрических...

Эффективность преобразования солнечной энергии

Преобразовав солнечную энергию в электричество, можно обеспечивать освещение зданий, приводить в движение элементы

Фотоэлектрические преобразователи солнечной батареи теряют свою эффективность на 0,5% при изменении температуры на 1 градус Цельсия.

Люминесцентный солнечный концентратор в решении актуальных...

Солнечная энергия имеет множество преимуществ в сравнении с углеродными источниками энергии.

В итоге стоимость такой конструкции приближается к стоимость каскадных фотоэлектрических систем.

Исследование эффективности использования солнечной...

Стандартная солнечная фотоэлектрическая станция состоит из следующих элементов: солнечной батареи, контроллера, аккумулятора. Рис. 1. Схема снабжения солнечной энергией.

Эффективность использования солнечных батарей...

‒ привести и проанализировать результаты расчета мощности солнечного излучения и выработки энергии

Рис. 1. Солнечная батарея. Выработка фотоэлектрической панели определяется по формуле (1)

Обзор солнечных панелей для систем автономного питания

солнечное излучение, панель, солнечная энергия, фотопреобразование энергии, солнечная панель, солнечная батарея, полупроводниковый материал, композитная пленка, годовая выработка, солнечная энергетика.

Анализ эффективности съёма энергии солнца в системе...

Процессы при возникновении солнечной энергии. Полезная энергия может преобразовываться с помощью Солнечной радиации, используя такие системы как активная и пассивная. В данный момент постоянно совершенствуются новые разработки фотоэлектрических систем...

Эффективность съёма энергии солнца в системе солнечный...

Цена солнечной фотоэлектрической установки

энергии, солнечная энергия, солнечное излучение, основа использования, Дальний Восток

Эксергетическая эффективность систем увлажнения воздуха на основе водяного аккумулятора солнечной энергии.

Похожие статьи

Способы получения электрики и тепла из солнечного излучения

- Фотоэлектрический способ. По мнению экспертов, будущее солнечной энергии с прямым преобразованием солнечного излучения в электрический ток с помощью полупроводниковых фотоэлементов — солнечных батарей.

Солнечная энергия и ее использование | Статья в журнале...

Использование солнечной энергии. Солнечная радиация может быть преобразована в полезную энергию, используя так называемые

К активным солнечным системам относятся солнечные коллекторы. Также в настоящее время ведутся разработки фотоэлектрических...

Эффективность преобразования солнечной энергии

Преобразовав солнечную энергию в электричество, можно обеспечивать освещение зданий, приводить в движение элементы

Фотоэлектрические преобразователи солнечной батареи теряют свою эффективность на 0,5% при изменении температуры на 1 градус Цельсия.

Люминесцентный солнечный концентратор в решении актуальных...

Солнечная энергия имеет множество преимуществ в сравнении с углеродными источниками энергии.

В итоге стоимость такой конструкции приближается к стоимость каскадных фотоэлектрических систем.

Исследование эффективности использования солнечной...

Стандартная солнечная фотоэлектрическая станция состоит из следующих элементов: солнечной батареи, контроллера, аккумулятора. Рис. 1. Схема снабжения солнечной энергией.

Эффективность использования солнечных батарей...

‒ привести и проанализировать результаты расчета мощности солнечного излучения и выработки энергии

Рис. 1. Солнечная батарея. Выработка фотоэлектрической панели определяется по формуле (1)

Обзор солнечных панелей для систем автономного питания

солнечное излучение, панель, солнечная энергия, фотопреобразование энергии, солнечная панель, солнечная батарея, полупроводниковый материал, композитная пленка, годовая выработка, солнечная энергетика.

Анализ эффективности съёма энергии солнца в системе...

Процессы при возникновении солнечной энергии. Полезная энергия может преобразовываться с помощью Солнечной радиации, используя такие системы как активная и пассивная. В данный момент постоянно совершенствуются новые разработки фотоэлектрических систем...

Альтернативные источники солнечной энергии...

Ключевые слова: электроэнергетика, альтернативные источники энергии, солнечная энергия, солнечные батареи, жилые дома.

Поскольку в настоящее время аккумуляторные системы, срок службы которых от трех до шести лет, в разы дороже самих солнечных батарей.

Способы получения электрики и тепла из солнечного излучения

- Фотоэлектрический способ. По мнению экспертов, будущее солнечной энергии с прямым преобразованием солнечного излучения в электрический ток с помощью полупроводниковых фотоэлементов — солнечных батарей.

Солнечная энергия и ее использование | Статья в журнале...

Использование солнечной энергии. Солнечная радиация может быть преобразована в полезную энергию, используя так называемые

К активным солнечным системам относятся солнечные коллекторы. Также в настоящее время ведутся разработки фотоэлектрических...

Эффективность преобразования солнечной энергии

Преобразовав солнечную энергию в электричество, можно обеспечивать освещение зданий, приводить в движение элементы

Фотоэлектрические преобразователи солнечной батареи теряют свою эффективность на 0,5% при изменении температуры на 1 градус Цельсия.

Люминесцентный солнечный концентратор в решении актуальных...

Солнечная энергия имеет множество преимуществ в сравнении с углеродными источниками энергии.

В итоге стоимость такой конструкции приближается к стоимость каскадных фотоэлектрических систем.

Исследование эффективности использования солнечной...

Стандартная солнечная фотоэлектрическая станция состоит из следующих элементов: солнечной батареи, контроллера, аккумулятора. Рис. 1. Схема снабжения солнечной энергией.

Эффективность использования солнечных батарей...

‒ привести и проанализировать результаты расчета мощности солнечного излучения и выработки энергии

Рис. 1. Солнечная батарея. Выработка фотоэлектрической панели определяется по формуле (1)

Обзор солнечных панелей для систем автономного питания

солнечное излучение, панель, солнечная энергия, фотопреобразование энергии, солнечная панель, солнечная батарея, полупроводниковый материал, композитная пленка, годовая выработка, солнечная энергетика.

Анализ эффективности съёма энергии солнца в системе...

Процессы при возникновении солнечной энергии. Полезная энергия может преобразовываться с помощью Солнечной радиации, используя такие системы как активная и пассивная. В данный момент постоянно совершенствуются новые разработки фотоэлектрических систем...

Эффективность съёма энергии солнца в системе солнечный...

Цена солнечной фотоэлектрической установки

энергии, солнечная энергия, солнечное излучение, основа использования, Дальний Восток

Эксергетическая эффективность систем увлажнения воздуха на основе водяного аккумулятора солнечной энергии.

Задать вопрос