Основное направление совершенствования двигателей связано с уменьшением концентрации вредных веществ в отработанных газах при обеспечении требуемой мощности двигателя, а также улучшения топливной экономичности. В связи с множеством различных факторов, влияющих на количество оксидов азота и твердых частиц в отработанных газах, возникает конфликт целей, невозможно одновременное снижение количества выбросов одного и второго компонентов. Проблема состоит в том, что снижение одного из вредных выбросов приводит к увеличению второго. Поэтому оптимизация параметров ДВС является предпочтительным путем достижения целей по совершенствованию двигателей, т. к. требует минимальных изменений в конструкции всех систем.
Цель ипостановка задачи.
Целью данной работы является оптимизация геометрии камеры сгорания дизеля для снижения расхода топлива при обеспечении требуемой мощности, а также выбросов вредных веществ. Для достижения поставленной цели решены следующие задачи:
- Определены оптимизируемые параметры и диапазон их изменения.
- Выбраны функциональные ограничения и критерии качества.
- Предложен метод оптимизации и проведен поиск оптимального решения.
- Проведен анализ результатов оптимизации.
Объектом исследования являются процессы смесеобразования, сгорания и образования вредных веществ в высокооборотном дизеле для грузового автомобиля 8ЧН 12/13.
Методика проведения оптимизации.
Задачу оптимизации формы камеры сгорания дизеля можно свести к поиску минимума целевой функции, описывающей зависимость показателей эффективности работы двигателя от геометрии камеры в поршне, а также параметров распылителя форсунки и топливоподачи. При этом в качестве ограничений выступают параметры, характеризующие работоспособность деталей двигателя.
Данная задача существенно осложняется большим разнообразием возможных форм камер и их варьируемых параметров. Исходная форма камеры сгорания (КС) в поршне выбирается на основании существующей конструкции либо исходя из достижения требуемых целей: повышения уровня турбулентности в КС, обеспечения направленного движения свежего заряда в объеме камеры.
Кроме того, геометрия камеры сгорания должна быть согласована с подачей топлива (количеством распыляющих отверстий, направлением струй топлива, давлением впрыскивания) и вихревым движением свежего заряда в цилиндре двигателя на момент закрытия впускных клапанов.
На этапе предварительного согласования формы КС в поршне дизеля с параметрами топливоподачи целесообразно использовать двухмерный подход, реализованный в программном комплексе Дизель-РК, разработанном на кафедре поршневых двигателей (Э2) МГТУ им. Н. Э. Баумана [2].
Процедура оптимизации формы камеры в поршне подразумевает выбор начальной точки расчета (базовый расчет), от которой в дальнейшем по одному из алгоритмов осуществляется поиск оптимального решения. Геометрические параметры КС в поршне исследуемого дизеля, полученные при расчете в Дизель-РК, используются в качестве первого приближения при расчете процессов смесеобразования, сгорания и расширения на модели сектора КС в программном комплексе FIRE ESE Diesel.
После получения предварительного решения определяются варьируемые параметры и пределы их изменения, составляется план численного эксперимента. После этого проводится серия расчетов и выбирается точка с наилучшими результатами, вблизи нее уточняются границы варьируемых параметров, и проводится заключительная серия расчетов, на основании которых определяется оптимальная геометрия камеры сгорания.
Выбор оптимизируемых параметров КС.
В FIRE ESE Diesel проводится расчет сектора камеры сгорания, что обуславливает некоторые ограничения программы: КС должна быть осесимметричной; моделируется только сжатие и рабочий ход двигателя, впуск и выпуск учесть невозможно [1].
Тем не менее, представление камеры сгорания в виде параметрической модели позволяет легко модифицировать исходную форму камеры в процессе оптимизации, что делает FIRE ESE Diesel незаменимым инструментом при доводке формы камеры в поршне.
На рис. 1 представлен эскиз исследуемой формы камеры сгорания.
Рис. 1. Границы изменения профиля КС
Для согласования формы КС и топливных струй при формировании исходных данных вводится значение угла α.
Исходные параметры геометрии представлены в табл. 1.
Таблица 1
Параметры исходной модели камеры
Параметр |
Размерность |
Величина |
TDC |
мм |
1,5 |
Tm |
мм |
11 |
T |
мм |
22,9 |
Di |
мм |
64 |
Db |
мм |
68 |
R1 |
мм |
9 |
R2 |
мм |
4 |
R3 |
мм |
0,5 |
α |
град |
72,5 |
В качестве варьируемых параметров геометрии КС выбираем диаметр Di и высоту вытеснителя Tm и определим границы их изменения: 53≤Di≤65 (мм); 8,8≤ Tm≤13,2 (мм). Выбор допустимых пределов варьирования проведен с учетом ограничений, связанных с компоновкой КС. План численного эксперимента составляется методом латинского гиперкуба. Суть данного метода заключается в равномерном разбиении расчетной области на n точек с учетом ограничений, которые задаются для варьируемых параметров. Преимущество этого метода заключается в том, что можно задать множество комбинаций для каждого параметра и количество используемых расчетных точек.
Определение функциональных ограничений.
В связи с отсутствием экспериментальных данных, исходные данные были получены из расчета рабочего процесса выполненного в Дизель-РК. Параметры двигателя и системы подачи топлива приведены в табл. 2. Расчеты произведены для режима номинальной мощности при 1900 мин-1.
Таблица 2
Параметры двигателя
Мощность, кВт |
300 |
Степень сжатия |
17,9 |
Число сопловых отверстий форсунки |
6 |
Диаметр соплового отверстия, мм |
0,19 |
Угол опережения впрыскивания, °ПКВ |
6 |
Продолжительность топливоподачи, °ПКВ |
29 |
Цикловая подача, г |
0,139 |
В дополнение к определению параметрических ограничений при формировании исходных данных для решения задачи поиска оптимальных параметров КС необходимо включить функциональные ограничения:
− степень сжатия постоянна для всех вариантов КС;
− максимальное давление цикла Pz≤18 МПа.
Формулировка функции цели.
В качестве функции цели выбраны уменьшение расхода топлива и снижение количества вредных веществ в отработанных газах. Оптимизацию выполняли методом Нелдера-Мида — это симплекс-метод для нахождения локального минимума целевой функции. Так как в задаче оптимизации заданы две функции, то симплекс является треугольником, а метод представляет собой поиск по шаблону, который сравнивает значения функций в трех вершинах треугольника. Наибольшее значение функции, отклоняется и заменяется новой. Таким образом, значения функций в вершинах уменьшаются и определяются координаты точки минимума целевой функции.
Результаты оптимизации.
Анализ расчетных точек показал, что изменением формы КС в поршне можно добиться снижения концентрация оксидов азота, а также улучшить топливную экономичность. Результаты расчетов для базового, лучшего и худшего вариантов представлены на рис. 2, 3. Трехмерное представление результатов дано на рис. 4, 5.
Рис. 2. Индикаторные диаграммы для различных вариантов КС
Рис. 3. Зависимости массовых долей оксидов азота в КС различной формы
Рис. 4. Температуры в сечении камеры сгорания дизеля для угла 730° поворота коленчатого вала: а) базовый вариант, б) лучший вариант (№ 6), в) худший вариант (№ 4)
Рис. 5. Локальное распределение NOx в сечении камеры сгорания дизеля для угла 780° поворота коленчатого вала: а) базовый вариант, б) лучший вариант (№ 6), в) худший вариант (№ 4)
Несмотря на то, что индикаторные диаграммы для базового, лучшего (№ 6) и худшего (№ 4) вариантов камеры сгорания практически идентичны, различие в локальных полях температуры рабочего тела приводит к разным значениям выбросов оксидов азота (рис. 3, 5). При этом, хотя по оксидам азота ожидаемо наилучшие результаты показывает базовый расчет, вариант № 6 характеризуется наибольшей мощностью и минимальным расходом топлива.
Вывод.
Результаты расчета показывают, что изменением формы камеры сгорания в поршне возможно добиться уменьшения расхода топлива при сохранении эффективной мощности двигателя.
Литература:
- Кавтарадзе Р. З. Трехмерное моделирование нестационарных теплофизических процессов в поршневых двигателях: учеб. пособие / Р. З. Кавтарадзе, Д. О. Онищенко, А. А. Зеленцов. М.: МГТУ им. Н. Э. Баумана, 2012. 85 с.
- Кулешов А. С. Программа расчета и оптимизации двигателей внутреннего сгорания ДИЗЕЛЬ-РК. Описание математических моделей, решение оптимизационных задач. М.: МГТУ им. Н. Э. Баумана, 2004. 123 с.