О собственных значениях одномерной обобщенной модели Фридрихса | Статья в журнале «Молодой ученый»

Автор:

Рубрика: Математика

Опубликовано в Молодой учёный №25 (159) июнь 2017 г.

Дата публикации: 27.06.2017

Статья просмотрена: 6 раз

Библиографическое описание:

Гадаев Р. Р. О собственных значениях одномерной обобщенной модели Фридрихса // Молодой ученый. — 2017. — №25. — С. 3-4. — URL https://moluch.ru/archive/159/44872/ (дата обращения: 20.04.2019).



Настоящая статья является продолжением работы [1], в которой рассмотрено семейство обобщенных моделей Фридрихса. Там обсужден случай, когда параметр функции этой модели имеет специальный вид и невырожденный минимум в , , различных точках шестимерного тора. В данной работе рассматривается обобщенная модель Фридрихса , . Изучено число и местоположение собственных значений оператора в зависимости от параметра взаимодействия . Пусть — одномерное комплексное пространство и - гильбертово пространство квадратично интегрируемых (комплекснозначных) функций, определенных на , . Обозначим через прямую сумму пространств и , т. е. . Гильбертово пространство называется двухчастичным обрезанным подпространством Фоковского пространства.

Рассмотрим обобщенную модель Фридрихса , действующую в гильбертовом пространстве и задающуюся как операторная матрица

, (1)

где операторы , и , определяются по формулам

, , , ;

, , , .

Здесь и - вещественные числа. Легко можно проверить, что в этих предположениях оператор , определенный по формуле (1), и действующий в гильбертовом пространстве , является ограниченным и самосопряженным.

Оператор возмущения , оператора , является самосопряженным оператором ранга 2. Следовательно, из известной теоремы Г.Вейля о сохранении существенного спектра при возмущениях конечного ранга вытекает, что существенный спектр оператора , совпадает с существенным спектром оператора . Известно, что , поэтому независимо от параметра взаимодействия имеет место равенство .

С целью изучения дискретного спектра оператора , определим регулярную в следующую функцию (определитель Фредгольма, ассоциированный с оператором ):

.

Следующая лемма устанавливает связь между собственными значениями оператора и нулями функции .

Лемма 1. При каждом фиксированном число является собственным значением оператора тогда и только тогда, когда .

Из определения функции следует, что она монотонно убывает на промежутках и . Следовательно, имеют место следующие утверждения.

Лемма 2. Оператор имеет единственное собственное значение, лежащее на тогда и только тогда, когда .

Лемма 3. Оператор имеет единственное собственное значение, лежащее на тогда и только тогда, когда .

Далее исследуем поведение функции в точках и . Очевидно, что

, .

Из теоремы о предельном переходе под знаком интеграла Лебега следует, что

, .

Основным результатом настоящей работы является следующая теорема.

Теорема 1. При каждом фиксированном оператор имеет не менее одного и не более двух собственных значений, лежащих вне существенного спектра. Кроме, того

1)для любого оператор имеет единственное собственное значение, лежащее на промежутке ;

2)существование собственного значения оператора на промежутке зависит от значения параметра взаимодействия ;

2.1) если , то оператор не имеет отрицательных собственных значений;

2.2) если , то оператор имеет единственное отрицательное собственное значение;

3) если , то число является единственным собственным значением оператора , расположение которого зависит от .

Литература:

1. Р. Р. Гадаев, У. А. Джонизоков. О семействе обобщенных моделей Фридрихса. Молодой учёный, –2016, — № 13 (117). — С. 5–7.

Основные термины (генерируются автоматически): гильбертово пространство, единственное собственное значение, оператор, собственное значение оператора, обобщенная модель, параметр взаимодействия, существенный спектр, существенный спектр оператора.


Похожие статьи

Условия существования собственных значений одной...

Возмущения спектра операторов в гильбертовом пространстве.

Основные термины (генерируются автоматически): собственное значение оператора, оператор, единственное собственное значение, блочно-операторная матрица, лемма, дискретный спектр...

Описание множества собственных значений одной блочной...

Возмущения спектра операторов в гильбертовом пространстве.

Основные термины (генерируются автоматически): оператор, гильбертово пространство, оператор уничтожения, существенный спектр, оператор рождения, блочно-операторная матрица, ограниченный...

Теорема 2.Число является собственным значением оператора...

Возмущения спектра операторов в гильбертовом пространстве. М.: Мир, 1972. Основные термины (генерируются автоматически): гильбертово пространство, оператор, собственное значение оператора, существенный спектр оператора, существенный спектр, операторная...

Собственные значение модели Фридрихса в одномерном случае

В гильбертовом пространстве рассмотрим модель Фридрихса действующий по формуле. , где и вещественно-аналитическая функция на .

Обозначим через и соответственно существенный спектр и дискретный спектр ограниченного самосопряженного оператора.

Описание существенного спектра матричной модели...

Описан местоположение существенного спектра оператора через спектр обобщенной модели Фридрихса , т. е

В этих предположениях на параметры оператор , действующий в гильбертовом пространстве по формуле (1) является ограниченным и самосопряженным.

Обобщенная модель Фридрихса и ее собственное пороговое...

Рассмотрим обобщенной модели Фридрихса , действующее в гильбертовом пространстве и задающихся как блочно–операторная матрица.

Основные термины (генерируются автоматически): функция, обобщенная модель, существенный спектр оператора, оператор...

О спектре тензорной суммы интегральных операторов

Оператор , имеет единственное простое собственное значение равное .

Возмущение спектра операторов в гильбертовом пространстве. М.: Мир, 1969. A. I. Mogilner.

О дискретном спектре одного матричного оператора

Рассмотрим оператор , действующий в гильбертовом пространстве и задающийся как операторная матрица.

Основные термины (генерируются автоматически): оператор, собственное значение оператора, гильбертово пространство, единственное простое...

Определитель возмущения для обобщенной модели Фридрихса

Легко можно проверить, что оператор , действующий в гильбертовом пространстве , является ограниченным и самосопряженным.

Пусть число — есть собственное значение оператора и пусть — соответствующая собственная вектор-функция.

Условия существования собственных значений одной...

Возмущения спектра операторов в гильбертовом пространстве.

Основные термины (генерируются автоматически): собственное значение оператора, оператор, единственное собственное значение, блочно-операторная матрица, лемма, дискретный спектр...

Описание множества собственных значений одной блочной...

Возмущения спектра операторов в гильбертовом пространстве.

Основные термины (генерируются автоматически): оператор, гильбертово пространство, оператор уничтожения, существенный спектр, оператор рождения, блочно-операторная матрица, ограниченный...

Теорема 2.Число является собственным значением оператора...

Возмущения спектра операторов в гильбертовом пространстве. М.: Мир, 1972. Основные термины (генерируются автоматически): гильбертово пространство, оператор, собственное значение оператора, существенный спектр оператора, существенный спектр, операторная...

Собственные значение модели Фридрихса в одномерном случае

В гильбертовом пространстве рассмотрим модель Фридрихса действующий по формуле. , где и вещественно-аналитическая функция на .

Обозначим через и соответственно существенный спектр и дискретный спектр ограниченного самосопряженного оператора.

Описание существенного спектра матричной модели...

Описан местоположение существенного спектра оператора через спектр обобщенной модели Фридрихса , т. е

В этих предположениях на параметры оператор , действующий в гильбертовом пространстве по формуле (1) является ограниченным и самосопряженным.

Обобщенная модель Фридрихса и ее собственное пороговое...

Рассмотрим обобщенной модели Фридрихса , действующее в гильбертовом пространстве и задающихся как блочно–операторная матрица.

Основные термины (генерируются автоматически): функция, обобщенная модель, существенный спектр оператора, оператор...

О спектре тензорной суммы интегральных операторов

Оператор , имеет единственное простое собственное значение равное .

Возмущение спектра операторов в гильбертовом пространстве. М.: Мир, 1969. A. I. Mogilner.

О дискретном спектре одного матричного оператора

Рассмотрим оператор , действующий в гильбертовом пространстве и задающийся как операторная матрица.

Основные термины (генерируются автоматически): оператор, собственное значение оператора, гильбертово пространство, единственное простое...

Определитель возмущения для обобщенной модели Фридрихса

Легко можно проверить, что оператор , действующий в гильбертовом пространстве , является ограниченным и самосопряженным.

Пусть число — есть собственное значение оператора и пусть — соответствующая собственная вектор-функция.

Похожие статьи

Условия существования собственных значений одной...

Возмущения спектра операторов в гильбертовом пространстве.

Основные термины (генерируются автоматически): собственное значение оператора, оператор, единственное собственное значение, блочно-операторная матрица, лемма, дискретный спектр...

Описание множества собственных значений одной блочной...

Возмущения спектра операторов в гильбертовом пространстве.

Основные термины (генерируются автоматически): оператор, гильбертово пространство, оператор уничтожения, существенный спектр, оператор рождения, блочно-операторная матрица, ограниченный...

Теорема 2.Число является собственным значением оператора...

Возмущения спектра операторов в гильбертовом пространстве. М.: Мир, 1972. Основные термины (генерируются автоматически): гильбертово пространство, оператор, собственное значение оператора, существенный спектр оператора, существенный спектр, операторная...

Собственные значение модели Фридрихса в одномерном случае

В гильбертовом пространстве рассмотрим модель Фридрихса действующий по формуле. , где и вещественно-аналитическая функция на .

Обозначим через и соответственно существенный спектр и дискретный спектр ограниченного самосопряженного оператора.

Описание существенного спектра матричной модели...

Описан местоположение существенного спектра оператора через спектр обобщенной модели Фридрихса , т. е

В этих предположениях на параметры оператор , действующий в гильбертовом пространстве по формуле (1) является ограниченным и самосопряженным.

Обобщенная модель Фридрихса и ее собственное пороговое...

Рассмотрим обобщенной модели Фридрихса , действующее в гильбертовом пространстве и задающихся как блочно–операторная матрица.

Основные термины (генерируются автоматически): функция, обобщенная модель, существенный спектр оператора, оператор...

О спектре тензорной суммы интегральных операторов

Оператор , имеет единственное простое собственное значение равное .

Возмущение спектра операторов в гильбертовом пространстве. М.: Мир, 1969. A. I. Mogilner.

О дискретном спектре одного матричного оператора

Рассмотрим оператор , действующий в гильбертовом пространстве и задающийся как операторная матрица.

Основные термины (генерируются автоматически): оператор, собственное значение оператора, гильбертово пространство, единственное простое...

Определитель возмущения для обобщенной модели Фридрихса

Легко можно проверить, что оператор , действующий в гильбертовом пространстве , является ограниченным и самосопряженным.

Пусть число — есть собственное значение оператора и пусть — соответствующая собственная вектор-функция.

Условия существования собственных значений одной...

Возмущения спектра операторов в гильбертовом пространстве.

Основные термины (генерируются автоматически): собственное значение оператора, оператор, единственное собственное значение, блочно-операторная матрица, лемма, дискретный спектр...

Описание множества собственных значений одной блочной...

Возмущения спектра операторов в гильбертовом пространстве.

Основные термины (генерируются автоматически): оператор, гильбертово пространство, оператор уничтожения, существенный спектр, оператор рождения, блочно-операторная матрица, ограниченный...

Теорема 2.Число является собственным значением оператора...

Возмущения спектра операторов в гильбертовом пространстве. М.: Мир, 1972. Основные термины (генерируются автоматически): гильбертово пространство, оператор, собственное значение оператора, существенный спектр оператора, существенный спектр, операторная...

Собственные значение модели Фридрихса в одномерном случае

В гильбертовом пространстве рассмотрим модель Фридрихса действующий по формуле. , где и вещественно-аналитическая функция на .

Обозначим через и соответственно существенный спектр и дискретный спектр ограниченного самосопряженного оператора.

Описание существенного спектра матричной модели...

Описан местоположение существенного спектра оператора через спектр обобщенной модели Фридрихса , т. е

В этих предположениях на параметры оператор , действующий в гильбертовом пространстве по формуле (1) является ограниченным и самосопряженным.

Обобщенная модель Фридрихса и ее собственное пороговое...

Рассмотрим обобщенной модели Фридрихса , действующее в гильбертовом пространстве и задающихся как блочно–операторная матрица.

Основные термины (генерируются автоматически): функция, обобщенная модель, существенный спектр оператора, оператор...

О спектре тензорной суммы интегральных операторов

Оператор , имеет единственное простое собственное значение равное .

Возмущение спектра операторов в гильбертовом пространстве. М.: Мир, 1969. A. I. Mogilner.

О дискретном спектре одного матричного оператора

Рассмотрим оператор , действующий в гильбертовом пространстве и задающийся как операторная матрица.

Основные термины (генерируются автоматически): оператор, собственное значение оператора, гильбертово пространство, единственное простое...

Определитель возмущения для обобщенной модели Фридрихса

Легко можно проверить, что оператор , действующий в гильбертовом пространстве , является ограниченным и самосопряженным.

Пусть число — есть собственное значение оператора и пусть — соответствующая собственная вектор-функция.

Задать вопрос