Применение геоинформационных систем в отраслях производственной деятельности | Статья в журнале «Молодой ученый»

Авторы: ,

Рубрика: Спецвыпуск

Опубликовано в Молодой учёный №15 (149) апрель 2017 г.

Дата публикации: 13.04.2017

Статья просмотрена: 28 раз

Библиографическое описание:

Новосельский К., Чумичев П. О. Применение геоинформационных систем в отраслях производственной деятельности // Молодой ученый. — 2017. — №15.1. 15- — URL https://moluch.ru/archive/149/42136/ (дата обращения: 24.05.2018).



Геоинформационная система (географическая информационная система, ГИС) – система сбора, хранения, анализа и графической визуализации пространственных (географических) данных и связанной с ними информации о необходимых объектах. Они имеют более широкую область практического использования. Приставка «гео» означает лишь использование «географического», то есть пространственного принципа организации и использования информации. Поэтому ГИС сегодня находят применение почти во всех сферах человеческой деятельности. Приведем несколько примеров:

– управление земельными ресурсами, земельные кадастры;

– инвентаризация и учет объектов распределенной производственной инфраструктуры и управление ими;

– проектирование, инженерные изыскания и планирование в градостроительстве, архитектуре, промышленном и транспортном строительстве;

– тематическое картографирование для различных областей применения;

– морская картография и навигация;

– аэронавигационное картографирование и управление воздушным движением;

– навигация и управление движением наземного транспорта;

– дистанционное зондирование Земли;

– управление природными ресурсами;

– мониторинг окружающей среды;

– реагирование на чрезвычайные ситуации;

– оперативное управление транспортными перевозками;

– маркетинг и анализ рынка;

– управление территориями;

– сельское хозяйство;

– лесное хозяйство;

– военное дело и разведка.

В широкой области приложений ГИС следует выделить три основных направления. Первое связано с решением задач учетно-инвентаризационного типа, в которых акцент делается на данных и координатных измерениях. Это наиболее распространенная сфера приложения ГИС. Другое направление связано с управлением и принятием решений. В третьем направлении акцент делается на моделировании и анализ сложных ситуаций и явлений. Эпоха открытия радиоволн существенно упростила задачу навигации и открыла новые перспективы перед человечеством во многих сферах жизни и деятельности, а с открытием возможности покорения космического пространства совершился огромный прорыв в области определения координат местоположения объекта на Земле.

Искусственные спутники Земли стали опорными станциями для радионавигации и на сегодняшний день системы спутниковой навигации стали доступны не только военным или морякам, но и простым людям, частным лицам и компаниям, для которых навигация необходима.

Виды навигации:

Автомобильная навигация – технология вычисления оптимального маршрута проезда транспортного средства по дорогам и последующего ведения по маршруту с помощью визуальных и голосовых подсказок о манёврах. Использует GPS/Инерциальную навигацию, автомобильную навигационную карту и оперативную информацию о пробках.

Астрономическая навигация – метод определения координат судов и летательных аппаратов, основанный на использовании радиоизлучения или светового излучения небесных светил.

Бионавигация – способность животных выбирать направление движения при регулярных сезонных миграциях.

Воздушная навигация – прикладная наука о точном, надёжном и безопасном вождении в воздухе летательных аппаратов.

Инерциальная навигация – метод определения параметров движения и координат объекта, не нуждающийся во внешних ориентирах или сигналах. Информационная навигация – процесс вождения пользователя по логически связанным данным.

Космическая навигация – управление движением космического летательного аппарата; включает в себя подвид – Астроинерциальная навигация – метод навигации космического летательного аппарата, комбинирующий средства инерциальной системы навигации и астрономической навигации.

Морская навигация – основной раздел судовождения. Радионавигация – теоретические вопросы и практические приёмы вождения судов и летательных аппаратов с помощью радиотехнических средств и устройств.

Подземная навигация – практическое применение различных средств измерений, для определения местонахождения и направления движения подземных проходческих комплексов.

Навигационная система – это электронная система, установленная на борту судна или транспортного средства в целях вычисления оптимального маршрута движения.

Рис. 1. Спутниковая навигация – практическое применение средств ГЛОНАСС/GPS

Для определения местонахождения и направления движения.

Навигационные системы обеспечивают ориентацию с помощью:

- карт, имеющих видео, графический или текстовый форматы;

- определяют местоположение с помощью датчиков или других внешних источников;

- автономных средств, таких как спутниковая связь и т.п.;

- получают информацию от других объектов.

Спутниковая система навигации – комплексная электронно-техническая система, состоящая из совокупности наземного и космического оборудования, предназначенная для определения местоположения (географических координат и высоты), а также параметров движения (скорости и направления движения и т. д.) для наземных, водных и воздушных объектов.

Основные элементы (сегменты) спутниковой системы навигации:

- Космический сегмент, состоящий из навигационных спутников (от 2 до 30), излучающих специальные радиосигналы, представляет собой совокупность источников радионавигационных сигналов, передающих одновременно значительный объем служебной информации. Основные функции каждого спутника – формирование и излучение радиосигналов, необходимых для навигационных определений потребителей и контроля бортовых систем спутника;

- Наземный сегмент – наземная система управления и контроля, включающая блоки измерения текущего положения спутников и передачи на них полученной информации для корректировки информации об орбитах.

В его состав входят космодром, командно-измерительный комплекс (КИК) и центр управления.

Космодром обеспечивает вывод спутников на требуемые орбиты при первоначальном развертывании навигационной системы, а также периодическое восполнение спутников по мере их выхода из строя или выработки ресурса. Главными объектами космодрома являются техническая позиция и стартовый комплекс. Техническая позиция обеспечивает прием, хранение и сборку ракет-носителей и спутников, их испытания, заправку и состыковку. В число задач стартового комплекса входят: доставка носителя с навигационным спутником на стартовую площадку, установка на пусковую систему, предполетные испытания, заправка носителя, наведение и пуск. Командно-измерительный комплекс служит для снабжения навигационных спутников служебной информацией, необходимой для проведения навигационных сеансов, а также для контроля и управления ими как космическими аппаратами. Центр управления, связанный информационными и управляющими радиолиниями с космодромом и командно-измерительным комплексом, координирует функционирование всех элементов спутниковой навигационной системы;

- Пользовательский сегмент – это приёмное клиентское оборудование (аппаратура потребителей – «спутниковые навигаторы»), используемое для определения координат. Она предназначается для приема сигналов от навигационных спутников, измерения навигационных параметров и обработки измерений. Для решения навигационных задач в аппаратуре потребителя предусматривается специализированный встроенный компьютер. Разнообразие существующей аппаратуры потребителей обеспечивает потребности наземных, морских, авиационных и космических (в пределах ближнего космоса) потребителей;

- Опциональный сегмент: информационная радиосистема для передачи пользователям поправок, позволяющих значительно повысить точность определения координат.

Основной принцип использования системы – определение местоположения путём измерения расстояний до объекта от точек с известными координатами. Расстояние вычисляется по времени задержки распространения сигнала от посылки его спутником до приёма антенной GPS-приёмника. То есть, для определения трёхмерных координат GPS-приёмнику нужно знать расстояние до трёх спутников и время GPS системы. Но поскольку разница между часами спутника и приёмника может внести в решение огромную ошибку, один из космических аппаратов (КА) используется как «базовый», с него получают время, остальные три используются для определения координат. Таким образом для определения координат и высоты приёмника, используются сигналы как минимум с четырёх спутников.

Навигационная спутниковая система (GNSS) – это очень сложный и дорогостоящий механизм и принадлежит он государству (министерству обороны той страны, где разрабатывался и внедрялся). GNSS являются также стратегическим видом вооружения тех стран, которым принадлежат. В случае возникновения боевых действий мирная с виду технология может быть задействована для наведения высокоточного оружия, десантирования грузов, ориентирования на местности целых подразделений, проведения разведывательно-диверсионных операций и, как результат – серьёзное преимущество в скорости и точности позиционирования перед противником, не имеющим собственных технологий спутникового позиционирования.

Литература:

  1. Житарь Я. И., Польшакова Н. В. Применение геоинформационных систем в мониторинге земель сельскохозяйственного назначения в Орловской области // Молодой ученый. 2015. № 7 (87). С. 64-66.
  2. Журкин И. Г., Шайтура С. В. Геоинформационные системы. – Москва: Кудиц-пресс, 2009. – 272 с.
  3. Информационные системы в экономике Польшакова Н. В., Коломейченко А. С., Яковлев А. С. Учебник / Москва, 2016. Сер. Высшее образование.
  4. Капралов Е., Кошкарев А., Тикунов В., Лурье И., Семин В., Серапинас Б., Сидоренко В., Симонов А. Геоинформатика. В 2 книгах. – Москва: Academia, 2010.
  5. Котова Е. И., Черникова К. С., Польшакова Н. В. Использование геоинформационных технологий в мониторинге сельскохозяйственных земель // Актуальные проблемы гуманитарных и естественных наук. 2014. № 12-2. С. 330-332.
  6. Некрасова В. В., Польшакова Н. В. Современные технологии в сельском хозяйстве // В сборнике: Перспективы развития аграрного сектора экономики: ключевые направления повышения эффективности По материалам всероссийской научно-практической конференции молодых ученых. 2013. С. 103-105.
  7. Польшакова Н. В. Навигационные системы для сельскохозяйственной техники // Молодой ученый. 2014. № 4. С. 432-434.
Основные термины (генерируются автоматически): определения координат, Польшакова Н, навигационных спутников, летательных аппаратов, направления движения, определения координат местоположения, вычисления оптимального маршрута, метод определения координат, космического летательного аппарата, навигационных спутников служебной, определения трёхмерных координат, точность определения координат, определения местонахождения, Спутниковая навигация, навигация необходима, Инерциальная навигация, Автомобильная навигация, Астрономическая навигация, Воздушная навигация, Астроинерциальная навигация.


Обсуждение

Социальные комментарии Cackle
Задать вопрос