Авторы: , ,

Рубрика: Технические науки

Опубликовано в Молодой учёный №15 (149) апрель 2017 г.

Дата публикации: 10.04.2017

Статья просмотрена: 35 раз

Библиографическое описание:

Усманов А. У., Шокиров Л. Б., Сайфуллаев С. С. Аналоговый и цифровой сигналы // Молодой ученый. — 2017. — №15. — С. 85-87. — URL https://moluch.ru/archive/149/41940/ (дата обращения: 23.05.2018).



Мы живем в мире аналоговых сигналов. Аналоговый сигнал подразумевает непрерывное изменение своих параметров, подобное движению конца секундной стрелки вдоль окружности циферблата часов. Голос является аналоговым сигналом, поскольку голосовые колебания могут иметь различную амплитуду в любой точке звукового диапазона. Звук также является аналоговым сигналом, поскольку может изменяться в широком диапазоне. Электронное оборудование типа передающих и принимающих устройств использует аналоговые цепи для обеспечения непрерывного изменения параметров. Аналоговое электронное оборудование было распространено до появления компьютеров. Рассмотрим электрический свет, яркость которого регулируется с помощью реостата. Вращение ручки реостата для установления необходимой яркости света является аналоговой операцией, причем яркость изменяется непрерывно. У системы отсутствуют какие-либо дискретные состояния, так что можно легко регулировать яркость, резко прибавляя или убавляя ее. Напротив, цифровой сигнала подразумевает дискретность значений параметров системы, проявляющуюся, например, в высвечивании значений времени на электронных часах. В цифровых системах вся информация существует в виде цифровых импульсов. В отличие от ламп с реостатными регуляторами яркости, лампы с трехкнопочным переключателем яркости являются цифровыми устройствами. Каждому положению переключателя этих ламп соответствует определенный уровень яркости. Никаких других промежуточных уровней яркости не существует. На рис.1. представлены примеры аналогового и цифрового сигналов. В электронных коммуникациях фундаментальной является возможность преобразования аналогового сигнала в цифровой и наоборот. Цифровые стереосистемы используют запись музыкальных произведений в цифровой форме в виде серии чисел, представляющих собой кодировку информации об аналоговом музыкальном сигнале. Электронные проигрывающие устройства цифровых стереосистем преобразуют цифровой сигнал в аналоговый, соответствующий звучанию музыки.

Рис. 1. Аналоговая и цифровая информация

Основы цифрового сигнала: биты и байты.

В основе любой цифровой системы лежит понятие бита (сокращение от английского binarydigit— двоичный разряд). Бит является основной единицей цифровой информации, принимающей одно из двух значений: 1 или 0.

Существует много способов представления бита. В электронике достаточно общим является наличие или отсутствие некоторого уровня напряжения: наличие напряжения соответствует 1, а его отсутствие — 0. Значение одного бита 1 или 0 может представлять только одно состояние системы — такое как «включено» или «выключено». Например, состояние лампы может быть представлено 0, если она выключена, и 1 во включенном состоянии: Выключена=0 Включена = 1.

Один бит информации, таким образом, имеет достаточно ограниченную емкость. Для описания состояний лампы с переключателем на три уровня яркости мы можем использовать 2 бита:

− Выключена=00 Включена=01

− Средний уровень яркости =10

− Максимальный уровень яркости =11

Два бита позволяют воспроизводить больший объем информации, чем один бит. В примере с лампой 2 бита позволяют различать четыре различных состояния лампы. Чем больше битов используется в одном блоке, тем больше его информационная емкость. В компьютерах обычно применяют блоки из 8 битов (либо с числами, кратными 8, такими как 16 или 32).

Восьмибитовый блок называется байтом. В одном байте можно с запасом хранить цифровую информацию о всех буквах, числах и других символах печатной машинки или клавиатуры компьютера. Использование 8 битов допускает 256 различных вариантов цепочек из 1 и 0. Число различных комбинаций или значений цепочек длиной в п бит равно 2. Например, 16 битов дают 65536 комбинаций. При добавлении одного бита число возможных комбинаций удваивается.

Схематическое изображение цепочки импульсов представлено на рис. 2. Переход из одного состояния в другое вдоль цепочки импульсов происходит мгновенно. Подобного рода упрощенные диаграммы отражают характеристики цепочек импульсов и дают инженерам и техникам возможность сравнивать их между собой. Цепочка импульсов соответствует последовательности 1 и 0 цифровой информации и может представлять собой чередование интервалов высокого и низкого уровней напряжения, либо его наличие и отсутствие. На языке электроники цифра 1 представляет наличие напряжения, либо его максимальное значение. Цифра 0 — отсутствие напряжения, либо его минимальное значение. Таким образом, можно говорить о 1 как о состоянии включено, или максимуме, а о 0, как о состоянии выключено, или минимуме.

Рис. 2. Идеальная последовательность импульсов (рисунок предоставлен AMPIncorporated)

В действительности изменение амплитуды импульса не происходит мгновенно, как показано на рис. 4. Электронные системы имеют конечное время срабатывания — требуется определенное время для того, чтобы значение напряжения или мощности светового сигнала перевести из состояния включено в состояние выключено, либо осуществить переключение между максимальным (высокое) и минимальным (низкое) значениями. Имеется также ограничение на длительность импульса. Даже в компьютерных системах, допускающих переключение от тысячи до миллиона импульсов в секунду, требуется одна миллионная или одна миллиардная доля секунды на процесс переключения. При решении инженерных задач, связанных с цифровыми системами, необходимо учитывать форму импульса. Рис. 3 показывает различные характеристики импульса.

Рис. 3. Форма импульса

Амплитуда характеризует высоту импульса и уровень энергии в импульсе. Величина энергии может определяться напряжением в цифровых системах или оптической мощностью в волоконно-оптических системах. Отметим, что в различных системах используются разные виды энергии.

Время нарастания — время, в течение которого импульс увеличивается от 10 % до 90 % уровня максимальной амплитуды.

Время спада, противоположное времени нарастания, соответствует интервалу уменьшения амплитуды от 90 % до 10 %. Время нарастания и спада в ряде случаев может различаться.

− Ширина импульса соответствует временному интервалу, в течение которого амплитуда импульса превосходит уровень в 50 % от максимальной амплитуды.

Время нарастания является очень важным параметром в электронике и волоконной оптике, поскольку оно ограничивает скорость работы системы. Действительно, скорость, с которой импульс может быть включен и выключен, будет определять максимальную частоту возникновения импульсов. Наиболее простой путь увеличения скорости работы системы — уменьшение времени нарастания и спада импульса, ускоряя тем самым процесс включения и выключения импульсов. При этом через систему проходит большее количество импульсов в течение заданного интервала времени. Даже если амплитуда импульса и его ширина остаются без изменений, уменьшение времени нарастания приводит к увеличению скорости работы. Уменьшение времени нарастания и спада импульса позволяет уменьшить и ширину импульса, что приводит к еще большему увеличению скорости работы. Наоборот, при увеличение времени нарастания импульса снижается скорость работы системы.

Литература:

  1. Гоноровский И. С. Радиотехнические цепи и сигналы [Текст]: учеб. пособие / И. С. Гоноровский, М. П. Демин. М.: Радио и связь, 1994.
  2. Рабинер, Л. Теория и применение цифровой обработки сигналов [Текст]: пер. с англ./ Л. Рабинер, Б. Гоулд. М.: Мир, 1979.
  3. Хоровиц П., Хилл У. Искусство схемотехники. Т. 1. М.: Мир, 1984.
  4. Гутников В. С. Интегральная электроника в измерительных устройствах. 2-е изд. Л.: Энергоатомиздат, 1988.
  5. Д. В. Сеньков, И. А. Запрягаев. Цифро-аналоговые и аналого-цифровые преобразователи / Новосибирск 2009.
Основные термины (генерируются автоматически): спада импульса, цепочки импульсов, изменение амплитуды импульса, Время нарастания, виде цифровых импульсов, нарастания импульса, наличие напряжения, увеличению скорости работы, характеристики цепочек импульсов, длительность импульса, различные характеристики импульса, скорость работы системы, Форма импульса, Идеальная последовательность импульсов, изображение цепочки импульсов, высоту импульса, частоту возникновения импульсов, ширину импульса, Ширина импульса, большее количество импульсов.


Обсуждение

Социальные комментарии Cackle
Задать вопрос