Конечность одномерного интеграла, зависящего от параметра | Статья в журнале «Молодой ученый»

Автор:

Рубрика: Математика

Опубликовано в Молодой учёный №15 (149) апрель 2017 г.

Дата публикации: 18.04.2017

Статья просмотрена: 7 раз

Библиографическое описание:

Бахшуллаева М. Ш. Конечность одномерного интеграла, зависящего от параметра // Молодой ученый. — 2017. — №15. — С. 102-104. — URL https://moluch.ru/archive/149/41671/ (дата обращения: 24.05.2018).



Пусть — некоторая аналитическая функция на . Определим регулярную функцию

.

Задача состоит из определения функции в точках и . Обычно такие задачи возникают при изучении пороговых явлений в спектре модели Фридрихса и их обобщений [1].

Очевидно, что

,

.

Из определения функции видно, что оно монотонно возрастает в интервалах и . Из теоремы о предельном переходе под знаком интеграла Лебега [2] следует, что существуют конечные или бесконечные интегралы

,

.

Для любого и положим

.

Тогда имеет место соотношение

.

Отметим, что если , то из аналитичности функции в следует, что существуют положительные числа и такие, что имеет место неравенство

(1)

для некоторого . В силу непрерывности функции на компактном множестве , существует число такое, что имеет место неравенство

(2)

при всех . Так как функция имеет невырожденный минимум в точке , для найденных положительных и также имеет место неравенства

, (3)

. (4)

Для определенности предположим, что . Тогда имеет место равенство

. (5)

Учитывая неравенства (2) и (4) для первого и третьего слагаемого стоящей в правой части равенства (5) имеем

,

.

Далее, учитывая неравенства (1) и (3), для второго слагаемого стоящей в правой части равенства (5) имеем

.

Таким образом, если , то

.

Пусть теперь . В этом случае силу непрерывности функции существуют положительные числа и такие, что при всех . Учитывая этот факт и неравенства (3) получим, что

.

Таким образом, в случае имеет место соотношение

.

Рассуждая аналогично можно указать условия существования интеграла

.

Пусть – гильбертово пространство квадратично-интегрируемых (комплекснозначных) функций, определенных на . В рассмотрим ограниченный самосопряженный модель Фридрихса

.

Для этой модели определитель Фредгольма имеет вид

.

Изложенные факты в этой работе играют важную роль при изучении спектральных свойств оператора , т. е. модели Фридрихса.

Литература:

  1. S.Albeverio, S. N. Lakaev, Z. I. Muminov. The threshold effects for a family of Friedrichs model under rank one perturbations. Journal of Mathematical Analysis and Applications. 330 (2007), P. 1152–1168.
  2. А. Н. Колмогоров, С. В. Фомин. Элементы теории функций и функционального анализа. М. «Наука». 1981.
Основные термины (генерируются автоматически): силу непрерывности функции, правой части равенства, место неравенство, определения функции, положительные числа, модели Фридрихса, знаком интеграла Лебега, приложения определенного интеграла, место неравенства, спектре модели Фридрихса, случае силу непрерывности, изучении пороговых явлений, модели определитель Фредгольма, нахождении коэффициента Джини, analysis and applications, гильбертово пространство квадратично-интегрируемых, family of friedrichs, threshold effects for, model under rank, аналитичности функции.


Обсуждение

Социальные комментарии Cackle
Задать вопрос