Авторы: ,

Рубрика: Технические науки

Опубликовано в Молодой учёный №14 (148) апрель 2017 г.

Дата публикации: 11.04.2017

Статья просмотрена: 3 раза

Библиографическое описание:

Тешаев М. Х., Орипов З. Б. О реализации программного движения алгоритмом управления по принципу обратной связи // Молодой ученый. — 2017. — №14. — С. 132-135. — URL https://moluch.ru/archive/148/41160/ (дата обращения: 19.04.2018).



Рассмотрим систему, состоящую из исполнительной электрической машины (ЭМ), механизма передачи вращательного движения с коэффициентом редукции i1 и объектом управления (ОУ). В качестве исполнительного элемента принимается электрическая машина (ЭМ) постоянного тока с независимым возбуждением. Обозначим через момент инерции якоря электрической машины (ЭМ), Jp — момент инерции редуктора. Пусть угол поворота вала электрической машины (ЭМ) (якоря) есть я. Если Мн — момент, прикладываемый к объекту управления (ОУ) со стороны электрической машины (ЭМ) в режиме двигателя, то уравнение вращательного движения, согласно работам Крутько П. Д. [1–4], а также Джолдасбекова У. А. и Молдабекова М. М. [5, 6], можно записать в виде:

,(1)

Где q есть n – мерный вектор столбец обобщенных координат, характеризующих конфигурацию системы; A(q) — матрица инерции подвижных элементов системы; – матрица кориолисовых и центробежных сил инерции, а также сил трения; C(q) — матрица, обусловленная силами тяжести; M – электромагнитный момент, развиваемый электрической машиной (ЭМ).

Систему (1) можно привести к одному уравнению, если использовать кинематическое соотношение и провести пересчет моментов, стоящих в правой части первого уравнения, к второй. Выполняя указанные действия, получим:

(2)

Где

Электрическая часть системы, согласно работам Чиликина М. Г. и Сандлера А. С. [7], Лунца Я. Л. [8], Крутько Л. Д. [1–4], описывается уравнениями:

,

M = KmI,(3)

,

Где L, R1 — индуктивность и активное сопротивление якорной цепи; I, U — ток и напряжение цепи якоря; Kw, Km — коэффициент противо-ЭДС и вращательного момента; кy, y – коэффициент усиления и постоянная времени усилителя; — входное напряжение усилителя.

Вводим электрическую постоянную времени:

Обычно, согласно Крутько П. Д. [1–4]y<<э. Отсюда . Тогда в качестве управляющей функции выступает напряжение и. Умножая первое уравнение (3) на , приведем его к виду:

(4)

Наряду с полной моделью (4) будем использовать далее так же упрощенную модель, в которой не учитываются процессы в якорных цепях исполнительных электрических машин ЭМ. В (4) принимая электрическую постоянную времени э=0, будем иметь:

,(5)

При безынерционном усилителе (у=0) из (2), (3) получим:

(6)

Следуя Крутько Л. Д. [1–4], проблему управления движением сформулируем следующим образом: в начальный момент времени t=0 состояние управляемой системы характеризуется значениями:

qj(o)=qjo,,(j=1,…,n)(7)

Требуется синтезировать такой алгоритм вычисления управляющих напряжений

, (j=1,…,n)(7a)

при котором, управляемая система перемещается за конечное время из точки (7) в окрестность траектории:

qj* = qj(t), (j=1,…,n)(8)

и остается в этой окрестности при последующем движении.

Согласно сформулированным требованиям, следуя Бойчуку Л. М. [9], отклонения j(t)=qj0-qj должны подчиняться в процессе управления дифференциальным уравнениям:

, (j=1,…,n)(9)

Где — положительные константы.

Следуя Крутько Л. Д. [1–4], и на основании (9) заключаем, что программное движение (8) будет реализовано только в том случае, когда ускорения изменяются по закону:

, (j=1,…,n)(10)

Следовательно, искомые законы (7а) формирования управляющих напряжений, которые обеспечивают реализацию программного движения (8), могут быть найдены подстановкой ускорения из (10) в (2). Такая подстановка дает

(11)

Где he – диагональные матрицы

he = diag {h1e, h2e,…,hne}, (e=o,…,1)

Для окончательного решения задачи синтеза, т. е. для определения закона формирования управляющих напряжений, подставим выражение М0 из (11) в соотношение (5):

(12)

Где Cm = diag {Cm1, Cm2,…,Cmn},(m=1,…,2), элементы которой ,

(j=1,…,n)

и откуда

(13)

Таким образом, основу алгоритма управления по принципу обратной связи составляют соотношения (11) и (12). На рис.1 представлена структурная схема замкнутой системы автоматического управления.

Рис. 1.

Здесь

Из рисунка видно, что замыкание контуров приводных электрических машин ЭМ осуществляется по переменным , значения которых используются при вычислении сигналов, C(q) и C2q, а также при определении рассогласований по положению и скорости. На практике вместо производных могут использоваться угловые скорости , (j=1,…,n). Управляющие напряжения для каждой исполнительной электрической машины ЭМ вычисляются согласно (13) по текущим значениям всех управляемых кинематических переменных и скоростей их изменения qj(t),, т. е. управляющее напряжение на отдельный привод формируется с учетом состояния управляемого механизма по всем степеням подвижности.

Из работ Малкина И. Г. [10] и Меркина Г. Д. [11] известно, что для устойчивой реализации этого алгоритма необходимо и достаточно, чтобы корни характеристического уравнения системы (9)

P2+h1p+ho=0,

имели отрицательные вещественные части. Поскольку, по условию, h1,ho — положительные постоянные, необходимые и достаточные условия устойчивости

Rehe<0(e=0,…,1) выполняются для любых h1, ho.

Литература:

  1. Крутько Л. Д. Алгоритмы адаптивного управления исполнительными системами манипуляторов // Изв. АН. СССР. Техническая кибернетика. — 1988. — № 4. – С. 3–13.
  2. Крутько П. Д. Обратные задачи динамики управляемых систем. Линейные модели. М.: Наука, 1983. – 271 с.
  3. Крутько П. Д., Лакота Н. А. Метод обратных задач динамики в теории конструирования алгоритмов управления манипуляционных роботов. Осуществление назначенных траекторий // Изв. АН СССР. Техническая кибернетика. — 1978. № 4. – С. 190–199.
  4. Крутько П. Д., Лакота Н. Я. Метод обратных задач динамики в теории конструирования алгоритмов управления манипуляционных роботов. Задача стабилизации // Изв. АН СССР. Техническая кибернетика. — 1987. — № 3. – С. 127–135.
  5. Джолдасбеков У. А., Молдабеков М. М. Уравнения динамики манипуляционных устройств высоких классов // В сборнике: Математическое моделирование задач теории механизмов и машин. — Алма-Ата. 1987. – С. 3–9.
  6. Джолдасбеков У. А., Бияров Т. Н. Динамика двухзвенного робота — манипулятора // В сборнике: Вопросы теории механизмов и управления машинами. Алма-Ата, 1986. – С. 3–8.
  7. Чиликин М. Г., Сандлер А. С. Общий курс электропривода, М.: Энергоиздат, 1981. – 576 с.
  8. Лунц Я. Л. Введение в теорию гироскопов. — М.: Наука, 1972. – 296 с.
  9. Бойчук Л. М. Метод структурного синтеза нелинейных систем автоматического управления, М.: Энергия, 1972. — 112 с.
  10. Малкин И. Г. Теория устойчивости движения. – М.: Наука, 1966. – 532 с.
  11. Меркин Г. Д. Введение в теорию устойчивости. М.: Наука,1987. – 304 с.
Основные термины (генерируются автоматически): электрической машины, электрических машин ЭМ, исполнительной электрической машины, Техническая кибернетика, принципу обратной связи, обратных задач динамики, Метод обратных задач, алгоритмов управления манипуляционных, управления манипуляционных роботов, конструирования алгоритмов управления, формирования управляющих напряжений, теории конструирования алгоритмов, вращательного движения, момент инерции, электрической машины ЭМ, АН СССР, инерции якоря электрической, автоматического управления, момент инерции редуктора, Лакота Н.

Обсуждение

Социальные комментарии Cackle
Задать вопрос