Автор: Шаповалова Анастасия Владимировна

Рубрика: Информатика

Опубликовано в Молодой учёный №10 (144) март 2017 г.

Дата публикации: 10.03.2017

Статья просмотрена: 34 раза

Библиографическое описание:

Шаповалова А. В. Практическое применение искусственных нейронных сетей в обработке графической информации // Молодой ученый. — 2017. — №10. — С. 41-43.



Ключевые слова: искусственные нейронные сети, применение, графическая информация

Прежде чем начать рассматривать практическое применение искусственных нейронных сетей, следует дать определение самой ИНС:

Искусственная нейронная сеть (ИНС) — математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма [1].

ИНС способны решать задачи, которые относятся к машинному обучению, а именно: классификация, регрессия, кластеризация. Также ИНС можно применять в задачах обучения с подкреплением.

Области применения ИНС различаются в зависимости от типа данных, с которыми она работает (рис.1).

Рис. 1. Классификация ИНС по типу обрабатываемых данных

На сегодняшний день ИНС находят своё применение практически в любой сфере, так что мы рассмотрим лишь те ИНС, которые имеют дело с графической информацией. К таким ИНС относятся [2]:

1) ИНС, занимающиеся идентификацией объекта на изображении. Это может быть кошка, рукописный текст, лицо и т. д. Такие ИНС могут применяться в различных областях, где необходимо определить объект, представленный на изображении: распознание эмоций (рис.2) и возраста, автомобильных номеров, медицинская диагностика.

C:\Documents and Settings\Singwell\Рабочий стол\1.jpg

Рис. 2. Определение эмоций искусственной НС

2) ИНС, которые могут стилизовать изображение. Например, ИНС можно обучить на картинах известного художника. В последствии такая ИНС сможет преобразовывать любые изображения под стилистику данного художника (рис.3).

C:\Documents and Settings\Singwell\Рабочий стол\2.jpg

Рис. 3. Изменение стилистики изображения

3) ИНС, распознающие среди множества изображений те, на которых есть тот же объект, что и на вашем изображении. Например, при загрузке в такую ИНС графического файла с изображением собаки, на выходе мы получим подборку изображений, на которых есть собака.

4) ИНС, способные генерировать новые изображения. Для этого её обучают, загружая набор изображений, а после инвертируют выход с входом.

5) ИНС, способные определять семантику, т. е. смысл изображения. Так ИНС может не только определить на фотографии человека, но и описать словами происходящее на изображении, например: парень в синей футболке сидит на диване.

Работа нейронных сетей схожа с работой памяти — они запоминают признаки, части изображений. В последние годы происходит бурное развитие искусственных нейронных сетей, они становятся более «умными» и совершают всё меньше ошибок.

Литература:

  1. Беркинблит М. Б. Нейронные сети. — М.: МИРОС и ВЗМШ РАО, 1993. — 96 с. — ISBN 5–7084–0026–9.
  2. Некоторые области применения нейронных сетей // geektimes.ru. URL: https://geektimes.ru/post/286686/
Основные термины (генерируются автоматически): нейронных сетей, искусственных нейронных сетей, Области применения ИНС, ИНС способны, Классификация ИНС, ИНС графического файла, биологических нейронных сетей, применение искусственных нейронных, нейронных сетей схожа, применения нейронных сетей, сетей нервных клеток, развитие искусственных нейронных, Искусственная нейронная сеть, обработке графической информации, эмоций искусственной НС, Изменение стилистики изображения, картинах известного художника, аппаратное воплощение, живого организма, графической информацией.

Ключевые слова

применение, искусственные нейронные сети, графическая информация

Обсуждение

Социальные комментарии Cackle
Задать вопрос