Математическая модель асинхронного двигателя с переменными ψs – ψm на выходе интегрирующих звеньев в Simulink | Статья в журнале «Молодой ученый»

Библиографическое описание:

Емельянов А. А., Бесклеткин В. В., Орлов Е. С., Романов А. А., Строкова Т. А., Иванин А. Ю., Габзалилов Э. Ф., Аюпов В. И. Математическая модель асинхронного двигателя с переменными ψs – ψm на выходе интегрирующих звеньев в Simulink // Молодой ученый. — 2017. — №9. — С. 10-24. — URL https://moluch.ru/archive/143/40237/ (дата обращения: 20.10.2018).



Данная работа является продолжением статьи [1]. Проекции векторов и выведены на основе интегрирующих звеньев с моделированием в Simulink.

В работе [1] было получено уравнение (13) для расчета ψsx в Script-Simulink:

Выразим потокосцепление ψsx по оси (+1):

Структурная схема для определения ψsx представлена на рис. 1.

Рис. 1. Структурная схема для определения потокосцепления ψsx в Script-Simulink

Преобразуем структурную схему на рис. 1 в оболочку, позволяющую производить расчет коэффициентов в отдельном блоке Subsystem. Для этого вместо операторов с коэффициентами, рассчитываемыми в Script, установим блоки перемножения, к которым подведены сигналы с результатами расчетов в Simulink, как показано на рис. 2.

Рис. 2. Структурная схема для определения потокосцепления ψsx в Simulink

Для определения ψmx приведем уравнение (14) из работы [1]:

Перенесем слагаемое в левую часть:

Умножим обе части уравнения на :

Обозначим и .

Выразим ψmx по оси (+1):

Структурная схема для определения ψmx приведена на рис. 3.

Рис. 3. Структурная схема для определения ψmx в Script-Simulink

Расчет коэффициентов будем производить в отдельном блоке Subsystem, поэтому вносим в структурную схему на рис. 3 блоки перемножения (рис. 4).

Рис. 4. Структурная схема для определения ψmx в Simulink

Аналогично, определим ψsy и ψmy по оси (+j).

Из уравнения (15), полученного в работе [1], выразим ψsy:

Структурная схема для определения ψsy представлена на рис. 5.

Рис. 5. Структурная схема для определения ψsy в Script-Simulink

Схема для расчета ψsy в Simulink приведена на рис. 6.

Рис. 6. Структурная схема для определения ψsy в Simulink

Для определения ψmy приведем уравнение (16) из работы [1]:

Перенесем слагаемое в левую часть и умножим обе части уравнения на :

Отсюда ψmy определится в следующей форме:

Структурная схема для определения ψmy приведена на рис. 7.

Рис. 7. Структурная схема для определения ψmy в Script-Simulink

Схема для расчета ψmy в Simulink дана на рис. 8.

Рис. 8. Структурная схема для определения ψmy в Simulink

На рис. 9 приведена структурная схема для реализации уравнения электромагнитного момента:

Рис. 9. Математическая модель определения электромагнитного момента m в Simulink

Из уравнения движения выразим механическую угловую скорость вращения вала двигателя (рис. 10):

Рис. 10. Математическая модель уравнения движения в Simulink

Математическая модель асинхронного двигателя с короткозамкнутым ротором с переменными ψsψm на выходе интегрирующих звеньев в Simulink дана на рис. 11, …, 15.

G:\ALL\С12\2017\3. Март\1.1\myfig.meta

Рис. 11. Общая схема математической модели асинхронного двигателя с переменными ψsψm на выходе интегрирующих звеньев в Simulink

Рис. 12. Паспортные данные

C:\Program Files\MATLAB\R2015b\bin\myfig.meta

Рис. 13. Расчет коэффициентов базового варианта

C:\Program Files\MATLAB\R2015b\bin\myfig.meta

Рис. 14. Расчет коэффициентов для варианта с переменными ψsψm

G:\ALL\С12\2017\3. Март\1.1\myfig.meta

Рис. 15. Оболочка модели асинхронного двигателя с переменными ψsψm на выходе интегрирующих звеньев в Simulink

Эту же схему можно представить в более компактной форме с использованием блоков Goto и From (рис. 16) и отдельных субблоков с расчетами потокосцеплений, приведенных на рис. 17 и 18.


C:\Program Files\MATLAB\R2015b\bin\myfig.meta

Рис. 16. Оболочка модели асинхронного двигателя с применением блоков Goto и From


C:\Program Files\MATLAB\R2015b\bin\myfig.meta C:\Program Files\MATLAB\R2015b\bin\myfig.meta

Рис. 17. Схемы для расчета ψmx и ψmy

C:\Program Files\MATLAB\R2015b\bin\myfig.meta C:\Program Files\MATLAB\R2015b\bin\myfig.meta

Рис. 18. Схемы для расчета ψsx и ψsy

В работах [2] и [3] дан образец расчета параметров асинхронного двигателя.

Номинальные данные:

Номинальный режим работыS1;

Номинальная мощность

Номинальное фазное напряжение

Номинальный фазный ток

Номинальная частота

Номинальная синхронная скорость

Номинальная скорость ротора

Номинальный КПД

Номинальный коэффициент мощности

Число пар полюсов

Параметры Т-образной схемы замещения при номинальной частоте:

Активное сопротивление обмотки статора

Индуктивное сопротивление рассеяния обмотки статора

Активное сопротивление обмотки ротора, приведенное к статору

Индуктивное сопротивление рассеяния обмотки ротора, приведенное статору

Главное индуктивное сопротивление

Суммарный момент инерции двигателя и механизма

Базисные величины системы относительных единиц:

Напряжение

Ток

Частота

Скорость ротора

Сопротивление

Потокосцепление

Индуктивность

Используя номинальные данные двигателя, определяем:

где – коэффициент, учитывающий различие значений электромагнитного момента и момента на валу двигателя в номинальном режиме (k = 1,0084).

В качестве базисной мощности выбираем значение электромагнитной мощности двигателя в номинальном режиме, определяемое по следующей формуле:

Относительные значения параметров схемы замещения двигателя:

Механическая постоянная времени:

Номинальное значение скольжения:

Относительное значение номинальной скорости ротора:

Нормирующий энергетический коэффициент:

При расчете режимов работы, для того чтобы isн = 1, mN = 1, usN = 1, ωsN = 1 и βN = 0,018, необходимо откорректировать rr:

где – корректирующий коэффициент [3, с. 296].

- коэффициент, показывающий отношение к .

Расчет коэффициентов для математической модели с переменными ψs – ψm:

Результаты моделирования асинхронного двигателя представлены на рис. 19.

Рис. 19. Графики скорости и момента

Литература:

  1. Емельянов А.А., Бесклеткин В.В., Пестеров Д.И., Юнусов Т.Ш., Воротилкин Е.А., Соснин А.С. Математическая модель асинхронного двигателя с переменными ψs – ψm на выходе апериодических звеньев в Simulink-Script // Молодой ученый. - 2017. - №8.
  2. Шрейнер Р.Т. Математическое моделирование электроприводов переменного тока с полупроводниковыми преобразователями частоты. – Екатеринбург: УРО РАН, 2000. - 654 с.
  3. Шрейнер Р.Т. Электромеханические и тепловые режимы асинхронных двигателей в системах частотного управления: учеб. пособие / Р.Т. Шрейнер, А.В. Костылев, В.К. Кривовяз, С.И. Шилин. Под ред. проф. д.т.н. Р.Т. Шрейнера. - Екатеринбург: ГОУ ВПО «Рос. гос. проф.-пед. ун-т», 2008. - 361 с.
Основные термины (генерируются автоматически): структурная схема, асинхронный двигатель, расчет коэффициентов, математическая модель, номинальный режим, электромагнитный момент, номинальная частота, отдельный блок, номинальная скорость ротора, левая часть.


Похожие статьи

Математическое моделирование асинхронного двигателя...

Номинальные данные: Номинальный режим работы S1; Номинальная мощность.

Номинальная скорость ротора. Номинальный КПД.

Относительное значение номинальной скорости ротора

Математическая модель асинхронного двигателя во...

электромагнитный момент, уравнение, структурная схема, номинальный режим, результат моделирования, вал двигателя, прямой пуск, номинальная частота, асинхронный двигатель.

Моделирование асинхронного двигателя с переменными is – ψr...

...структурная схема, асинхронный двигатель, расчет коэффициентов, математическая модель, электромагнитный момент, номинальный режим, левая часть, номинальная частота, отдельный блок, номинальная скорость ротора.

Математическая модель асинхронного двигателя...

Номинальная скорость ротора. Номинальный КПД. Номинальный коэффициент мощности. Число пар полюсов.

Рис. 7. Полная схема математической модели асинхронного двигателя.

Математическая модель асинхронного двигателя...

структурная схема, асинхронный двигатель, расчет коэффициентов, левая часть, математическая модель, ток, электромагнитный момент, номинальный режим, номинальная частота, отдельный блок.

Математическая модель асинхронного двигателя...

Номинальная скорость ротора. Номинальный КПД.

структурная схема, асинхронный двигатель, расчет коэффициентов, математическая модель, ток, электромагнитный момент, номинальный режим, номинальная частота, левая часть, отдельный блок.

Математическое моделирование САР скорости асинхронного...

асинхронный двигатель, статорный ток, математическая модель, номинальная частота, номинальный режим, регулятор тока, проекция, полная схема, Базисная величина системы, электромагнитный момент.

Математическая модель асинхронного двигателя...

Номинальные данные: Номинальный режим работыS1; Номинальная мощность.

Номинальная скорость ротора. Номинальный КПД.

Рис. 12. Оболочка математической модели асинхронного двигателя с переменными — в системе абсолютных единиц.

Математическая модель асинхронного двигателя...

Номинальная скорость ротора. Номинальный КПД.

структурная схема, асинхронный двигатель, расчет коэффициентов, математическая модель, ток, электромагнитный момент, номинальный режим, номинальная частота, левая часть, отдельный блок.

Обсуждение

Социальные комментарии Cackle

Похожие статьи

Математическое моделирование асинхронного двигателя...

Номинальные данные: Номинальный режим работы S1; Номинальная мощность.

Номинальная скорость ротора. Номинальный КПД.

Относительное значение номинальной скорости ротора

Математическая модель асинхронного двигателя во...

электромагнитный момент, уравнение, структурная схема, номинальный режим, результат моделирования, вал двигателя, прямой пуск, номинальная частота, асинхронный двигатель.

Моделирование асинхронного двигателя с переменными is – ψr...

...структурная схема, асинхронный двигатель, расчет коэффициентов, математическая модель, электромагнитный момент, номинальный режим, левая часть, номинальная частота, отдельный блок, номинальная скорость ротора.

Математическая модель асинхронного двигателя...

Номинальная скорость ротора. Номинальный КПД. Номинальный коэффициент мощности. Число пар полюсов.

Рис. 7. Полная схема математической модели асинхронного двигателя.

Математическая модель асинхронного двигателя...

структурная схема, асинхронный двигатель, расчет коэффициентов, левая часть, математическая модель, ток, электромагнитный момент, номинальный режим, номинальная частота, отдельный блок.

Математическая модель асинхронного двигателя...

Номинальная скорость ротора. Номинальный КПД.

структурная схема, асинхронный двигатель, расчет коэффициентов, математическая модель, ток, электромагнитный момент, номинальный режим, номинальная частота, левая часть, отдельный блок.

Математическое моделирование САР скорости асинхронного...

асинхронный двигатель, статорный ток, математическая модель, номинальная частота, номинальный режим, регулятор тока, проекция, полная схема, Базисная величина системы, электромагнитный момент.

Математическая модель асинхронного двигателя...

Номинальные данные: Номинальный режим работыS1; Номинальная мощность.

Номинальная скорость ротора. Номинальный КПД.

Рис. 12. Оболочка математической модели асинхронного двигателя с переменными — в системе абсолютных единиц.

Математическая модель асинхронного двигателя...

Номинальная скорость ротора. Номинальный КПД.

структурная схема, асинхронный двигатель, расчет коэффициентов, математическая модель, ток, электромагнитный момент, номинальный режим, номинальная частота, левая часть, отдельный блок.

Задать вопрос