В данной работе представлена модель энергетической установки — магнитотеплового двигателя как альтернативного источника энергии.
Ключевые слова: магнитотепловые технологии, постоянные магниты
В нашем постоянно развивающемся мире, где ресурсы ограничены, а потребности человека возрастают с каждым днем, большое значение имеют способы обеспечения человека тем, что ему необходимо для обеспечения своей жизнедеятельности. Ключевую роль в данном аспекте играет энергетика, которая является базисом практически любой деятельности современного общества и от нее зависит будущее его развития. Основой всей энергетики в настоящее время является традиционная энергетика: тепловая, ядерная и гидроэнергетика.
До недавнего времени главной проблемой всей традиционной энергетики являлись только ограниченные запасы легкодоступного топлива для воспроизводства энергии. Однако сейчас возникает еще одна глобальная проблема — изменение климата и окружающей среды из-за деятельности человека, в том числе из-за столь масштабного применения традиционной энергетики, которые грозят непредсказуемыми негативными последствиями для него же.
Эти факторы вызывают обеспокоенность общества, промышленности и экономики, в плане выбора дальнейшего пути развития энергетики в масштабах всего современного мира. В связи с этим возрастает необходимость в переходе от традиционных энергетических ресурсов к ресурсам, которые неисчерпаемы и менее вредоносны для окружающей среды — альтернативные источники энергии.
К альтернативным и наиболее перспективным источникам энергии в будущем относят следующие: солнечная энергетика, ветроэнергетика, гидроэнергетика, энергия биомассы, геотермальная энергетика, водородная энергетика, приливная энергетика и др.
Так же к направлениям альтернативной энергетики относят магнитотепловую технологию (МТТ). В основе данной технологии лежит изменение магнитных свойств рабочего тела при изменении его температуры во внешнем магнитном поле создаваемом постоянными магнитами, что приводит к возникновению результирующей силы магнитного взаимодействия. Эта сила создает механическую работу перемещения рабочих элементов. Одним из устройств в которых нашла применение МТТ является МТД.
Данная работа посвящена магнитотепловой технологии (МТТ) и основанной на ней устройстве магнитотеплового двигателя (МТД), созданного в Московском авиационном институте (НИУ).
Первые работы с описанием применения магнитотепловых явлений опубликованы более 100 лет назад. Так Никола Тесла в своем патенте [3] 1889 года предлагает простые конструкции магнитотеплового двигателя (thermo magnetic motor). Используя горелку H для нагрева ферромагнитного элемента и располагая ее между источником магнитного поля N и элементом A, Тесла устанавливал возвратно-поступательное или вращательное движение (Рис. 1). Разработки Н. Тесла в данном патенте представляют собой качественное решение использования магнитотепловых эффектов в технике с использованием железа в качестве ферромагнитного материала.
Рис. 1. Одно из конструктивных решений магнитотеплового мотора Н. Тесла патент США № 396121
Дальнейшие разработки становились конструктивно все сложней, нацеливаясь на создание двигательных установок и генераторов электрического тока.
Одним из устройств в которых нашла применение МТТ так же является созданная в МАИ(НИУ) модель магнитотеплового двигателя.
Магнитотепловой двигатель (МТД) — это двигатель предназначенный для преобразования магнитотепловой энергии в механическую, которую затем можно генерировать в электрическую.
Устройство МТД следующее (Рис. 2): он состоит из платформ 1 и 2 в которых располагается вал ротора 5 в подшипниках 8, на валу закреплен диск 3 с рабочими элементами 6 на диске, так же установлены постоянные магниты 7 образующие магнитную систему в зазоре которой расположен диск с рабочими элементами, так же имеются трубки для подачи нагревающей и охлаждающей жидкости 9 и 4.
Рис. 2. Устройство магнитотеплового двигателя
Принцип работы МТД следующий (Рис. 3): ферромагнитное рабочее тело 2, находящееся при температуре ниже точки Кюри Тс, по мере ввода в магнитное поле спонтанно намагничивается и на него начинает действовать сила магнитного притяжения F1 (рис. 3. а), которая движет ферромагнетик к магнитному центру системы вдоль градиента магнитной индукции (магнитный центр расположен в геометрическом центре системы).
Рис. 3. Принцип работы МТД
В центре системы на него так же начинает действовать сила F2 уравновешивающая F1 и не позволяющая ферромагнитному телу покинуть зазор и продолжить движение. Для компенсации тормозящей силы F2, не позволяющей рабочему телу покинуть межполюсной зазор 3, производится тепловое воздействие на рабочее тело. В результате чего ферромагнитное тело переходит в парамагнитное состояние и изменяется его намагниченность. Изменение намагниченности тела приводит к нарушению равенства сил F1 и F2 и рабочее тело приобретает однонаправленное движение, покидая магнитное поле. Особенно сильно этот эффект проявляется в точке Кюри Тс, в окрестностях магнитного фазового перехода магнетика из ферромагнитного в парамагнитное состояние.
Магнитотепловой двигатель в зависимости от требуемой мощности и применения, может быть выполнен с различными конструктивными особенностями, например, иметь несколько магнитных систем на одном диске и несколько дисков на одном валу, что конечно же будет увеличивать его мощность, а следовательно, и коэффициент полезного действия. Так же может быть различной форма магнитов в магнитной системе и форма лопаток, что тоже влияет на работу двигателя.
Данный двигатель может найти практическое применение в энергетике, космонавтике и авиации в качестве альтернативного экологически чистого источника энергии или привода для механизмов.
Литература:
- Снигирев А. Энергетика будущего: пособие / Экологический правозащитный центр «Bellona». СПб: Изд-во ООО «ПЦ Синтез», 2008. — 36 с.
- Tesla N. Thermomagnetic motor // Патент США № US 396121, 15.01.1889.
- Brown G. V. Magnetic heat pumping near room temperature, J. Appl. Phys 1976; 47:3673–3680.
- Pecharsky V. K., Gschneidner K. A., Giant Magnetocaloric Effect in Gd5(Si2Ge2), Phys. Rev.Lett.1997; 78(23): 4494–4497.