В статье представлены результаты анализа фактических значений коэффициента местных потерь, используемого при проектировании тепловых сетей на стадии предварительного гидравлического расчета. На основе анализа фактических проектов, получены осредненные значения для сетей промплощадок с делением на магистрали и ответвления. Найдены уравнения, позволяющие рассчитать коэффициент местных потерь в зависимости от диаметра трубопровода сети.
Ключевые слова: тепловые сети, гидравлический расчет, коэффициент местных потерь
При гидравлическом расчете тепловых сетей возникает необходимость в задании коэффициента α, учитывающего долю потерь давления в местных сопротивлениях [1,2]. В современных нормативах, выполнение которых является обязательными при проектировании, про нормативный метод гидравлического расчета и конкретно коэффициент α не сказано. В современной справочной и учебной литературе приводятся, как правило, значения, рекомендованные отмененным СНиП II-36–73*. В табл. 1 представлены значения α для водяных сетей.
Таблица 1
Коэффициент α для определения суммарных эквивалентных длин местных сопротивлений
Тип компенсаторов |
Условный проход трубопровода, мм |
α |
Транзитные |
||
Сальниковые |
До 1400 |
0,2 |
П-образные с гнутыми отводами |
До 300 |
0,3 |
П-образные со сварными или крутоизогнутыми отводами |
200–350 |
0,5 |
То же |
400–500 |
0,7 |
То же |
600–1400 |
1 |
Разветвленные тепловые сети |
||
Сальниковые |
До 400 |
0,3 |
То же |
450–1400 |
0,4 |
П-образные с гнутыми отводами |
До 150 |
0,3 |
Тоже |
175–200 |
0,4 |
Тоже |
250–300 |
0,6 |
П-образные со сварными или крутоизогнутыми отводами |
175–250 |
0,6 |
Тоже |
300–350 |
0,8 |
Тоже |
400–500 |
0,9 |
П-образные со сварными отводами |
600–1400 |
1 |
Из таблицы 1 следует, что значение α может находиться в интервале от 0,2 до 1. Прослеживается увеличение значения с ростом диаметра трубопровода.
В литературе [3] для предварительных расчетов, когда не известны диаметры труб, долю потерь давления в местных сопротивлениях рекомендуют определять по формуле Б. Л. Шифринсона
,(1)
где z — коэффициент, принимаемый для водяных сетей 0,01; G — расход воды, т/ч.
Результаты расчетов по формуле (1) при различных расходах воды в сети, представлены на рис. 1.
Рис. 1. Зависимость α от расхода воды
Из рис. 1 следует, что значение α при больших расходах может быть и больше 1, а при малых меньше 0,1. Например, при расходе 50 т/ч, α=0,071.
В литературе [2] приведено выражение для коэффициента местных потерь
,(2)
где — эквивалентная длина участка и его длина соответственно, м; — сумма коэффициентов местных сопротивлений на участке; λ — коэффициент гидравлического трения.
При проектировании водяных тепловых сетей при турбулентном режиме движения для нахождения λ, используют формулу Шифринсона. Принимая значение эквивалентной шероховатости kэ=0,0005 мм, формула (2) преобразуется к виду
.(3)
Из формулы (3) следует, что α зависит от длины участка, его диаметра и суммы коэффициентов местных сопротивлений, которые определяются конфигурацией сети. Очевидно, что значение α увеличивается при уменьшении длины участка и увеличении диаметра.
С целью определения фактических коэффициентов местных потерь α, были рассмотрены существующие проекты водяных тепловых сетей промышленных предприятий различного назначения. Располагая бланками гидравлического расчета, для каждого участка определялся коэффициент α по формуле (2). Отдельно по магистрали и ответвлениям находились средневзвешенные значения коэффициента местных потерь для каждой сети. На рис. 2 представлены результаты расчетов α по расчетным магистралям для выборки из 10 схем сетей, а на рис. 3 для ответвлений.
Рис. 2. Фактические значения α по расчетным магистралям
Из рис. 2 следует, что минимальное значение 0,113, максимальное 0,292, а среднее значение по всем схемам составляет 0,19.
Рис. 3. Фактические значения α по ответвлениям
Из рис. 3 следует, что минимальное значение 0,118, максимальное 0,377, а среднее значение по всем схемам составляет 0,231.
Сопоставляя полученные данные с рекомендуемыми, можно сделать следующие выводы. Согласно табл. 1 для рассмотренных схем значение α=0,3 для магистралей и α=0,3÷0,4 для ответвлений, а средние фактические составляют 0,19 и 0,231, что несколько меньше рекомендуемых. Диапазон изменения фактических значений α не превышает рекомендуемых, т.е табличные значения (табл.1) можно трактовать как «не более».
Для каждого диаметра трубопровода были определены средние значения α по магистралям и ответвлениям. Результаты расчета представлены в табл. 2.
Таблица 2
Значения фактических коэффициентов местных потерь α
dн,мм |
273 |
219 |
194 |
159 |
133 |
108 |
89 |
76 |
57 |
45 |
38 |
32 |
магистраль |
0,426 |
0,312 |
0,316 |
0,202 |
0,197 |
0,207 |
0,064 |
0,064 |
0,092 |
0,047 |
- |
- |
ответвление |
- |
- |
0,660 |
0,618 |
0,480 |
0,401 |
0,306 |
0,353 |
0,155 |
0,308 |
0,117 |
0,039 |
Из анализа таблицы 2 следует, что с увеличением диаметра трубопровода значение коэффициента α увеличивается. Методом наименьших квадратов были получены линейные уравнения регрессии для магистрали и ответвлений в зависимости от наружного диаметра :
;(4)
.(5)
На рис. 4 представлены результаты расчетов по уравнениям (4),(5), и фактические значения для соответствующих диаметров.
Рис. 4. Результаты расчетов коэффициентов α по уравнениям (4),(5)
На основе анализа реальных проектов тепловых водяных сетей промплощадок, получены осредненные значения коэффициентов местных потерь с делением на магистрали и ответвления. Показано, что фактические значения не превышают рекомендуемые, а средние, незначительно меньше. Получены уравнения, позволяющие рассчитать коэффициент местных потерь в зависимости от диаметра трубопровода сети для магистралей и ответвлений.
Литература:
- Копко, В. М. Теплоснабжение: курс лекций для студентов специальности 1–700402 «Теплогазоснабжение, вентиляция и охрана воздушного бассейна» высших учебных заведений / В. М. Копко. — М: Изд-во АСВ, 2012. — 336с.
- Водяные тепловые сети: Справочное пособие по проектированию / Н. К. Громов [и др.]. — М.: Энергоатомиздат, 1988. — 376с.
- Козин, В. Е. Теплоснабжение: учебное пособие для студентов вузов / В. Е. Козин. — М.: Высш. школа, 1980. — 408с.
- Пустовалов, А. П. Повышение энергоэффективности инженерных систем зданий посредством оптимального выбора регулирующих клапанов / А. П. Пустовалов, Д. Н. Китаев, Т. В. Щукина // Научный вестник Воронежского государственного архитектурно-строительного университета. Серия: Высокие технологии. Экология. — 2015. — № 1. — С. 187–191.
- Семенов, В. Н. Влияние энергосберегающих технологий на развитие тепловых сетей / В. Н. Семенов, Э. В. Сазонов, Д. Н. Китаев, О. В. Тертычный, Т. В. Щукина // Известия высших учебных заведений. Строительство. — 2013. — № 8(656). — С. 78–83.
- Китаев, Д. Н. Влияние современных отопительных приборов на регулирование тепловых сетей / Д. Н. Китаев //Научный журнал. Инженерные системы и сооружения. — 2014. — Т.2. — № 4(17). — С. 49–55.
- Китаев, Д. Н. Вариантное проектирование систем теплоснабжения с учетом надежности тепловой сети / Д. Н. Китаев, С. Г. Булыгина, М. А. Слепокурова // Молодой ученый. — 2010. — № 7. — С. 46–48.
- Китаев, Д. Н. Развитие системы теплоснабжения городского округа город Воронеж в долгосрочной перспективе /Д. Н. Китаев // Инженерные системы и сооружения. — 2010. — № 2. — С.72–77.
- Китаев, Д. Н. Перспективные схемы использования когенерационных установок в системах теплоснабжения / Д. Н. Китаев, А. В. Золотарев, Н. С. Шестых // Научный журнал. Инженерные системы и сооружения. — 2012. — № 2(7). — С. 26–29.