Математическая модель асинхронного двигателя с переменными ir – ψr на выходе интегрирующих звеньев в Simulink | Статья в журнале «Молодой ученый»

Библиографическое описание:

Емельянов А. А., Бесклеткин В. В., Устинов А. П., Патерило А. С., Орлов Е. С., Романов А. А., Строкова Т. А., Габзалилов Э. Ф., Аюпов В. И. Математическая модель асинхронного двигателя с переменными ir – ψr на выходе интегрирующих звеньев в Simulink // Молодой ученый. — 2017. — №4. — С. 123-133. — URL https://moluch.ru/archive/138/38981/ (дата обращения: 27.05.2018).



Данная работа является продолжением статьи [1]. Проекции векторов и выведены на основе интегрирующих звеньев с моделированием в Simulink.

В работе [1] было получено уравнение (7’) для расчета ψrx в Script-Simulink:

Выразим потокосцепление ψrx по оси (+1):

Структурная схема для определения ψrx приведена на рис. 1.

Рис. 1. Структурная схема для определения потокосцепления ψrx в Script-Simulink

Преобразуем структурную схему на рис. 1 в оболочку, позволяющую производить расчет коэффициентов в отдельном блоке Subsystem. Для этого вместо операторов с коэффициентами, рассчитываемыми в Script, установим блоки перемножения, к которым подведены сигналы с результатами расчетов в Simulink, как показано на рис. 2.

Рис. 2. Структурная схема для определения потокосцепления ψrx в Simulink

Для расчета тока irx приведем уравнение (8’) из работы [1]:

Перенесем в левую часть:

Отсюда определим ток irx по оси (+1):

Структурная схема для определения тока irx дана на рис. 3.

Рис. 3. Структурная схема для определения тока irx в Script-Simulink

Расчет коэффициентов будем производить в отдельном блоке Subsystem, поэтому вносим в структурную схему на рис. 3 блоки перемножения (рис. 4).

Рис. 4. Структурная схема для определения тока irx в Simulink

Аналогично, определим потокосцепление ψry и ток iry по оси (+j).

Из уравнения (7”) работы [1] выразим ψry:

Структурная схема для определения потокосцепления ψry приведена на рис. 5.

Рис. 5. Структурная схема для определения потокосцепления ψry в Script-Simulink

Подготовим эту схему для расчета в Simulink (рис. 6).

Рис. 6. Структурная схема для определения потокосцепления ψry в Simulink

Приведем уравнение (8”) из работы [1]:

Перенесем в левую часть:

Тогда ток iry определится в следующей форме:

Структурная схема для определения iry дана на рис. 7.

Рис. 7. Структурная схема для определения тока iry в Script-Simulink

Схема для расчета iry в Simulink представлена на рис. 8.

Рис. 8. Структурная схема для определения тока iry в Simulink

На рис. 9 представлена структурная схема для реализации уравнения электромагнитного момента:

Рис. 9. Математическая модель определения электромагнитного момента m в Simulink

Из уравнения движения выразим механическую угловую скорость вращения вала двигателя (рис. 10):

Рис. 10. Математическая модель уравнения движения в Simulink

Математическая модель асинхронного двигателя с короткозамкнутым ротором с переменными ir ψr на выходе интегрирующих звеньев в Simulink дана на рис. 11, …, 15.

C:\Program Files\MATLAB\R2015b\bin\myfig.meta

Рис. 11. Общая схема математической модели асинхронного двигателя с переменными ir – ψr на выходе интегрирующих звеньев в Simulink

Рис. 12. Паспортные данные

C:\Program Files\MATLAB\R2015b\bin\myfig.meta

Рис. 13. Расчет коэффициентов базового варианта

C:\Program Files\MATLAB\R2015b\bin\myfig.meta

Рис. 14. Расчет коэффициентов для варианта с переменными ir – ψr

C:\Program Files\MATLAB\R2015b\bin\myfig.meta

Рис. 15. Оболочка модели асинхронного двигателя с переменными ir – ψr на выходе интегрирующих звеньев в Simulink

В работах [2] и [3] дан образец расчета параметров асинхронного двигателя.

Номинальные данные:

Номинальный режим работыS1;

Номинальная мощность

Номинальное фазное напряжение

Номинальный фазный ток

Номинальная частота

Номинальная синхронная скорость

Номинальная скорость ротора

Номинальный КПД

Номинальный коэффициент мощности

Число пар полюсов

Параметры Т-образной схемы замещения при номинальной частоте:

Активное сопротивление обмотки статора

Индуктивное сопротивление рассеяния обмотки статора

Активное сопротивление обмотки ротора, приведенное к статору

Индуктивное сопротивление рассеяния обмотки ротора, приведенное статору

Главное индуктивное сопротивление

Суммарный момент инерции двигателя и механизма

Базисные величины системы относительных единиц:

Напряжение

Ток

Частота

Скорость ротора

Сопротивление

Потокосцепление

Индуктивность

Используя номинальные данные двигателя, определяем:

где – коэффициент, учитывающий различие значений электромагнитного момента и момента на валу двигателя в номинальном режиме (k = 1,0084).

В качестве базисной мощности выбираем значение электромагнитной мощности двигателя в номинальном режиме, определяемое по следующей формуле:

Относительные значения параметров схемы замещения двигателя:

Механическая постоянная времени:

Номинальное значение скольжения:

Относительное значение номинальной скорости ротора:

Нормирующий энергетический коэффициент:

При расчете режимов работы, для того чтобы и , необходимо откорректировать

Где – корректирующий коэффициент [3, с. 296].

- коэффициент, показывающий отношение к .

Расчет коэффициентов для математической модели с переменными ir – ψr:

Результаты моделирования асинхронного двигателя представлены на рис. 16.

Рис. 16. Графики скорости и момента

Литература:

  1. Емельянов А. А., Бесклеткин В. В., Устинов А. П., Патерило А. С., Честюнин А. Е., Соснин А. С., Попович Ю. А., Жедик М. С. Математическая модель асинхронного двигателя с переменными ir – ψr на выходе апериодических звеньев в Simulink-Script // Молодой ученый. – 2017. – №2. – С. 38-48.
  2. Шрейнер Р. Т. Математическое моделирование электроприводов переменного тока с полупроводниковыми преобразователями частоты. – Екатеринбург: УРО РАН, 2000. – 654 с.
  3. Шрейнер Р. Т. Электромеханические и тепловые режимы асинхронных двигателей в системах частотного управления: учеб. пособие / Р. Т. Шрейнер, А. В. Костылев, В. К. Кривовяз, С. И. Шилин. Под ред. проф. д. т. н. Р. Т. Шрейнера. – Екатеринбург: ГОУ ВПО «Рос. гос. проф.-пед. ун-т», 2008. – 361 с.
Основные термины (генерируются автоматически): структурная схема, асинхронный двигатель, расчет коэффициентов, математическая модель, ток, электромагнитный момент, номинальный режим, номинальная частота, левая часть, отдельный блок.


Обсуждение

Социальные комментарии Cackle
Задать вопрос