В статье обсуждаются методы и инструменты для электрохимического определения антиоксидантной активности биосубстратов. Приведены доводы, подтверждающие эксплуатационные преимущества электрохимических (амперометрического и потенциометрического) способов определения антиоксидантой активности веществ с применением медиаторных реакций, содержащих электрохимически обратимую ред-окс пару.
Ключевые слова: электрохимические методы анализа, вольтамперометрия, кулонометрия, потенциометрия, амперометрия, антиоксидантная активность, определение
Введение
Повышенное внимание к антиоксидантам (АО), как важнейшего объекта исследования и анализа в науках о жизни, объясняется поисками методов профилактики старения организма и свободно-радикальных процессов, потенцирующих заболевания сердечнососудистой системы, неврологические, онкологические и другие патологии [1–3]. В связи с этим проблема контроля состояния антиоксидантной системы организма человека и ее коррекция с помощью как медикаментозных, так гомеопатических средств становится особенно острой [4]. При этом создание новых, экспрессных, универсальных и доступных методик оценки антиоксидантных свойств биосубстратов остается актуальной.
Механизм взаимодействия антиоксидантов со свободными радикалами и активными формами кислорода в водных средах протекает с передачей электронов и имеет донорно-акцепторную природу, а, следовательно, такие процессы целесообразно исследовать с использованием электрохимических методов, которые характеризуются высокой чувствительностью, быстротой, относительно невысокой стоимостью необходимого оборудования и реактивов, а значит, и анализа в целом [5,6].
Основные принципы электрохимических методов анализа изложены в многочисленных монографиях и учебно-методических пособиях, поэтому целью настоящей статьи является оценка аналитических возможностей электрохимических методов и приборов для определения антиоксидантной активности.
Обсуждение икомментарии
В настоящее время из способов определения антиоксидантной активности веществ с использованием электрохимических методов анализа можно выделить: кулонометрические (Г. К. Будников, И. Ф. Абдулин, Казанский государственный университет); потенциометрические (Х. З. Брайнина, Е. Л. Герасимова, Уральский государственный экономический университет, Екатеринбург); амперометрические (Я. И. Яшин, А. Я. Яшин, АО «Химавтоматика», Москва); вольтамперометрические (Е. И. Короткова, О. А. Аврамчик, Томский политехнический университет).
В таблице 1 приведены сопоставительные характеристики электрохимических методов определения АОА.
Таблица 1
Сопоставительная характеристика электрохимических методов определения АОА
Метод |
Принцип метода |
Достоинства |
Недостатки |
Циклическая вольтамперометрия |
Определение Emax и последующий учет количества электричества |
Прямое определение АО |
Близкие значения Emax при необходимости учета количества электричества |
Амперометрические биосенсоры, модифицированные ферментами или берлинской лазурью |
Ферментативное получение супер-оксид-анион радикала О2●-, Н2О2 и их взаимодействие с АО с последующим измерением уменьшения тока |
Использование активных форм кислорода (АФК) для определения АО |
Малый ресурс работы биосенсора, трудоемкость процедуры изготовления биосенсора. |
Катодная вольтамперометрия |
Получение О2●- за счет электровосстановления растворенного в аналите кислорода. Измерение уменьшения тока после взаимодействия электрогенерированного О2●- с антиоксидантом |
Прямое определение суммы антиоксидантов в аналите. Применение АФК для определения АО |
Используются ртуть содержащие электроды. Необходимость учета сдвига потенциала первой волны электровосстановления О2 в зависимости от природы антиоксиданта. Использование кинетического параметра расчета АОА, зависящего от состояния поверхности индикаторного электрода. Относительно большие объемы аналита, необходимость перемешивания раствора. Невозможность использования в полевых и экспедиционных работах. |
Кулонометрическое определение электро-генерированных титрантов (ЭТ) (хлора, брома, йода) |
Получение ЭТ in situ. Измерение уменьшения количества электричества при взаимодействии с АО |
Хорошая чувствительность метода. Корреляция с хемилю-минесцентным методом определения АО |
Высокая химическая активность ЭТ. Различные ЭТ ведут себя с антиоксидантами по-разному. |
Потенциометрическое определение АО с использованием медиаторов |
Измеряется потенциал хорошо электрохимически обратимой ред-окс пары и его изменение в присутствии АО |
Простота и надежность метода. Хорошие чувствительность, воспроизводимость и экспресссность |
Относительно большие объемы аналита, необходимость перемешивания раствора. Необходимость нахождения стехиометрических коэффициентов реакции взаимодействия АО с окисленной формой медиатора. |
Амперометрическое проточно-инжекционное определение индивидуальных АО с использованием жидкостного хроматографа «ЦветЯуза-01-АА» с амперометрическим датчиком |
Подбирается потенциал окисления для каждого вещества антиоксиданта, присутствующего в пробе. |
Высокие чувст-вительность и экспрессность метода. Использование микро-количеств анализируемого вещества. Высокая автоматизация метода. |
Высокая стоимость прибора. Необходимость высокой квалификации оператора. Невозможность использования в полевых и экспедиционных работах. |
Как видно, каждый из приведенных в таблице методов электрохимического определения антиоксидантов обладает как определенными достоинствами, так и недостатками. При этом суммарная антиоксидантная активность определяется по ингибированию сигнала в присутствии антиоксидантов в модельной или естественной медиаторной системе и выбор того или другого остается за самим исследователем, который в праве выбирать готовый, создавать новый или модифицировать уже известный метод, исходя из своих целей и возможностей.
Современный рынок аналитических приборов для электрохимического определения антиоксидантной активности представлен рядом моделей, функционирующих в рамках вольтамперометрического анализа.
Вольтамперометрия один из методов анализа, который в настоящее время наиболее динамично развивается [7]. Это обусловлено появлением новых материалов (в том числе и композиционных) пригодных для изготовления электродов, так и усовершенствованием электронных схем с использованием микропроцессорной техники. При сравнительной простоте оборудования этот метод сочетает в себе высокую абсолютную чувствительность (до десятых или сотых микрограмма элемента в литре раствора), многоэлементное определение в одной пробе, экспрессность и легкость автоматизации операций. По приводимым в зарубежных журналах обзорам он находится на третьем месте по частоте применения среди инструментальных методов анализа тяжелых металлов (атомно-абсорбционная спектроскопия и масс-спектрометрии).
По своей абсолютной чувствительности метод занимает очень неплохие позиции. Кроме высокой чувствительности не последнюю роль играет и стоимость анализа, включающая время работы оператора затраты на использование оборудования и расход реактивов и энергии. Немаловажную роль играет и стоимость оборудования.
В экологическом контроле вольтамперометрия прочно удерживает позиции экономичного и высокоэффективного метода анализа тяжелых металлов, давая при наименьших затратах наибольший объем информации по общему содержанию металлов.
Предназначенные ранее для анализа токсичных тяжелых металлов и некоторых органических (фенолы, серосодержащие вещества) поллютантов окружающей среды эти приборы могут быть применены в определении антиоксидантной активности.
На рисунке 1. представлена линейка приборов для осуществления вольт-амперометрического анализа [8].
Рис. 1. Приборы для вольтамперометрического анализа, выпускаемые российской промышленностью
Привлекательность любого инструментального метода связана не только с его потенциальными возможностями, но и с конкретным техническим исполнением, удобствами в работе с приборами и наличием определенного технического сервиса при их эксплуатации.
Нами была проведена модернизация вольтамперометрического оборудования на базе полярографа ПУ-1 Гомельского ЗИП, путем его подключения к компьютеру через мультмедийную звуковую карту [9]. Управляющей программой являлась программа, известная как «электронный самописец» PowerGraph 2.0. Такая модернизация прибора «вдохнула» вторую жизнь полярографу ПУ-1, поставив его в ряд с современными приборами (Рис.2).
|
|
а |
б |
Рис. 2. Компьютеризированный вольт-амперометрический комплекс на базе полярографа ПУ-1 (а); Поляризационные кривые первой волны электровосстановления кислорода на пленочном ртутно-графитовом электроде в 0,05 М фосфатном буфере, рН 6,86. (Отображено на мониторе ПК, работающего в режиме Power Ghaph 2.0) (б). |
|
С его помощью нами были изучены электрохимические процессы катодного электровосстановления кислорода на электродах из различных материалов (Ag, Cu, Hg-C, графит и стеклографит) в присутствии антиоксидантов различного типа. Также была доказана антиоксидантная активность католита электроактивированной воды, полученной в диафрагменном электролизере «Эсперо-1» [10].
К недостаткам метода, пожалуй, можно отнести необходимость использования сравнительно больших объемов, до 20 мл, анализируемых растворов, перемешивание растворов, использование ртуть содержащих материалов и длительность измерений.
Нами был предложен электрохимический датчик, частично устраняющий эти проблемы [11]. С его помощью, необходимый объем анализируемого раствора был снижен до 10–100 мкл, что позволило исключить перемешивание. Однако и его применение в рутинном анализе антиоксидантов (и тяжелых металлов) также не позволило увеличить экспрессность определения. При этом заменять планарный электрод датчика, в виду его загрязнения предшествующими аналитами, приходилось через каждые 4–5 измерений.
Унифицирование методов электрохимического определения суммарной антиоксидантной активности на принципе вольтамперометрического определения кислорода до и после введения в буферный раствор вещества-антиоксиданта, привело к созданию компактного анализатора антиоксидантной активности АО-1 производства НПО «Полиант» (г.Томск) [12]. Внешний вид анализатора представлен на рисунке 3.
Рис. 3. Анализатор антиоксидантной активности АО-1: 1. Корпус. 2. Держатель электродов. 3. Разъемы для фиксации электродов. 4. Стаканчик с анализируемым раствором. 5. Магнитная мешалка. 6. Выключатель питания. 7. Держатель предохранителя. 8. Ввод сетевого кабеля. 9. Ввод кабеля связи с ПК.
Нами была предложена конструкция амперометрического датчика для определения суммарной АОА биопрепаратов [13,14]. В основе метода также лежит измерение тока деполяризации рабочего электрода, в процессе катодного электровосстановления (ЭВ) растворенного в буферной среде кислорода до и после введения в электрохимическую ячейку вещества-антиоксиданта. На рисунке 4 показаны принципиальная схема и внешний вид амперометрического датчика для определения суммарной АОА.
|
|
|
а |
б |
в |
Рис.4.Схематичное (а) и фотоизображение (б) портативного амперометрического датчика для измерения суммарной антиоксидантной активности. Проведение измерений относительной АОА напитка «Тархун» с помощью портативного электрохимического датчика (в) |
||
Датчик включает в себя рабочий электрод — катод из посеребряной проволоки диаметром 1 мм и вспомогательный электрод из медной проволоки или углеграфитового стержня, диаметром 1–2 мм. На катод накладывается опорное напряжение -500 мв от источника постоянного тока (батарейки). Этот потенциал, соответствует первой волне ЭВ кислорода в слабо протонированных растворах. Датчик подключен к измерительно-задающему устройству через микросхему — операционный усилитель, обеспечивающую индикацию максимального тока деполяризации каждые 5–7 секунд, а также возможность установления диапазона шкалы.
Перед началом работы датчик калибруют, погрузив его в буферный раствор (0,5 М фосфатный буфер, рН = 6,86). Показания на цифровом табло с помощью резистора на корпусе измерительно-задающего устройства устанавливают на «0».
Затем в буферный раствор вводится дозируемый объем раствора вещества — антиоксиданта, например аскорбиновой кислоты, определенной концентрации, и показания прибора с помощью второго резистора устанавливают на «100». С помощью откалиброванного прибора производят измерения АОА других биопрепаратов. Таким образом, антиоксидантная активность растворов веществ может быть измерена в процентах относительно аскорбиновой кислоты (или другого антиоксиданта). Небольшие габариты задающе-измерительного устройства позволяют разместить его на запястье правой руки оператора с помощью ремешка-«репейника» (Рис.4в).
К недостаткам разработанного нами устройства можно отнести малый ресурс работы датчика. Регенерировать рабочий электрод необходимо было через каждые 100–120 измерений.
Несмотря на простую технологию регенерации рабочего электрода, которая заключалась в очистке его поверхности азотной кислотой и осаждении на нее серебра, эта процедура вызывала определенные неудобства.
Приборы для кулонометрического определения антиоксидантной активности представлены кулонометром «Эксперт– 006» (НПО «Вольта», г. Ст-Петербург [15]. Кулонометр «Эксперт — 006» показан на рисунке 5.
Рис. 5. Кулонометр «Эксперт-006»
Эксплуатационные преимущества кулонометра «Эксперт– 006»
Технические:
‒ современная элементная база
‒ наличие микропроцессора
‒ возможность работы со сменными ячейками
‒ удобное подключение к ПК через интерфейс RS 232
‒ вывод результатов измерения на дисплей прибора или ПК
Аналитические:
‒ возможность работы и построения графиков без компьютера
‒ титрование до заданной точки или анализ всей кривой титрования
‒ возможность записи в память прибора результатов измерений количества вещества с указанием времени измерения.
К недостаткам прибора можно отнести также большие объемы растворов, необходимость их перемешивания, длительность измерения, связанного с электрогенерацией необходимого количества титранта.
Потенциометрические приборы, предназначенные для измерения оксидантной / антиоксидантной активности с использованием медиаторной реакции, содержащей ред-окс пару представлены многофункциональным потенциометрическим анализатором «МПА-1» [16]. Внешний вид прибора показан на рисунке 6.
Анализатор позволяет реализовать потенциометрический способ экспресс определения антиоксидантной активности — АОА [17,18].
Рис. 6.Многофункциональный потенциометрический анализатор «МПА-1»
Основные характеристики МПА-1:
Интерфейс МПА-1 состоит из жидкокристалического индикатора
(4 строки по 16 символов) и клавиатуры.
Программное обеспечение позволяет активировать функции прибора в любом сочетании.
Диапазон измерения потенциала:
от 4 до -4В.Предел обнаружения:
10–6 М антиоксидантов;
время одного измерения — 3–5 мин.
В самом деле, прибор неплохо зарекомендовал себя в анализе антиоксидантной активности продуктов питания, напитков, вин. Кроме того, он олицетворяет лучшее соотношение «цена — качество» и доступен для приобретения небольшими лабораториями. К технико-эксплуатационным недостаткам можно отнести те же большие объемы анализируемых растворов и необходимость перемешивания.
Модификация этого метода привело к разработке нами анализатора антиоксидантной активности [19], который также основан на использовании в качестве медиатора ред-окс пары: K3 [Fe(CN6)]/K4 [Fe(CN6)]. Новым элементом в этом приборе является электрохимический датчик, позволяющий работать как в стационарном, так и проточно-инжекционном режимах. На рисунке 7 показан анализатор антиоксидантной активности ΣАОА.
Анализатор содержит электрохимический датчик с измерительным микроэлектродом из золота и Ag/AgCl электродом сравнения, расположенных в микроячейке, объемом 0,1 мл, которая подключена к цифровому милливольтметру. Время установления потенциала не превышает 15 сек. Инжекция анализируемой пробы, объемом 1,0 мл в рабочую микрокамеру датчика, осуществляет ее многократную промывку самим аналитом, что обеспечивает воспроизводимость сигнала.
Электрохимический датчик имеет USB — интерфейс и может быть подключен к персональному компьютеру и управляется посредством микропроцессора «Arduino».
Анализатор ΣАОА успешно апробирован в определении антиоксидантной активности экстрактов лекарственных растений [20], фитосборов и фиточаев [21,22], напитков и винопродукции [23].
Рис. 7. Анализатор антиоксидантной активности ΣАОА
В очередной раз, сравнивая потенциометрические и амперометрические методы анализа, следует отметить, что последние обладают неоспоримыми преимуществами. Одним из таких является прямая зависимость: аналитический сигнал (ток) — концентрация вещества, в то время как потенциометрические методы основаны на зависимости Нернста: аналитический сигнал (потенциал) — логарифм концентрации вещества, что предъявляет более строгие требования к метрологии измерения.
В этой связи несомненный интерес вызывают инженерные решения, предпринятые разработчиками прибора «ЦветЯуза-001-АА» (НПО «Химавтоматика», г.Москва) (Рис.8) [24].
Рис.8. Прибор «ЦветЯуза- 01-АА»
Рис. 9. Амперометрическая ячейка: а- схема ячейки с электродами типа «отражающая стенка»: 1 — рабочий электрод; 2 -вспомогательный электрод: б — внешний вид ячейки
Этот прибор сочетает в себе принципы жидкостной хроматографии и амперометрической детекции микроколичеств вещества антиоксиданта, окисляемого при определенном потенциале [25,26]. «Сердцем» этого прибора является амперометрический датчик «стенка-струя» с размещенным в нем микроэлектродом из инертного материала. Анализируемая проба вещества-антиоксиданта инжектируется с помощью крана-дозатора в хроматографическую колонку и с потоком жидкости элюента, продавливаемой плунжерным насосом под давлением до 35 атм, попадает в амперометрический датчик типа «стенка-струя». Амперометрический детектор измеряет электрический ток в ячейке (рис. 9) при окислении анализируемого вещества на поверхности рабочего электрода с наложенным потенциалом определённого значения.
Аналитический сигнал регистрируется на ленте самопишущего потенциометра или на мониторе компьютера в виде серии пиков. Высота пика или его площадь находятся в пропорциональной зависимости от концентрации вещества- антиоксиданта.
С помощью прибора «ЦветЯуза- 01-АА» в настоящее время определены водо- и жирорастворимые антиоксиданты, относящиеся к различным флавоноидам в продуктах питания, шоколаде, тонизирующих напитках, винах, растительных масел, лекарственных растениях и пр. [27]. Этот прибор наряду с прибором для потенциометрического определения антиоксидантов МПА-1, является, пожалуй, наиболее цитируемым в научной литературе, посвященной изучению свойств антиоксидантов. К недостаткам можно отнести его сравнительную дороговизну (более 12000 долларов США), что является пока недоступной для многих лабораторий.
Выводы
- Критически обсуждены аналитические возможности электрохимических методов изучения свободнорадикальных процессов. Сопоставлены разработанные аналоги оборудования для определения антиоксидантов, с выпускаемыми промышленностью приборами.
- Приведены доводы, подтверждающие эксплуатационные преимущества электрохимических (амперометрического и потенциометрического) способов определения антиоксидантой активности веществ с применением медиаторных реакций, содержащих электрохимически обратимую ред-окс пару.
Литература:
- Владимиров Ю.А, Азизова О. А., Деев А. И. Свободные радикалы в живых системах // Итоги науки и техники, 2000. — Т. 29. — С. 151–167.
- Барабой В. А., Брехман И. И., Голожин В. Г. Перекисное окисление и стресс. — М.: Наука, 2004. — 148 с.
- Воскресенский С. К., Жутаев И. А., Бобырев В. Н. Антиоксидантная система, онтогенез и старение // Вопр. мед. Химии, 2004. — № 1. — C. 14–27.
- Будников Г. К., Зиятдинова Г. Л. Антиоксиданты как объекты биоаналитической химии// Журн. аналит. химии. — 2005. — Т. 60, № 7. — С. 678–691.
- Короткова Е. И. Новый способ определения активности антиоксидантов // Журн. физ. химии. — 2000. –Т.74, № 9. — С. 1704–1706.
- Korotkova E. I., Karbainov Y. A., Shevchuk A. V. Study of antioxidant properties by voltammetry //J. Electroanalyt. Сhem. — 2002. — Vol. 518, № 1. — Р. 56–60.
- Вяселев М. Р. Обобщенная теория вольтамперометрических методов и её приложение для повышения эффективности аналитических измерений // Автореф….доктора техн.наук. –Казань, 1984. — 44 с. / http://www.dissercat.com.
- Вольтамперометрические (полярографические) анализаторы.// http:// techob.ru / katalog/katalog-priborov
- Аронбаев С. Д., Насимов А. М., Аронбаев Д. М., Насыров Р. Х. Компьютеризированный аналитический комплекс для инверсионной вольтамперометрии на базе универсального полярографа ПУ-1 // Научный вестник Самаркандского Государственного Университета.- 2009.- № 1(53). — С.47–50.
- Аронбаев Д. М. Исследование антиоксидантной активности фракций электрохимически модифицированной воды // МНО “Inter-Medical”(Ежемесячный медицинский журнал).- 2014.- № 3. — С.104–110.
- Патент РУз на полезную модель FAP 00929 U 8 G 01 N 27/48. Электрохимический датчик / Аронбаев Д. М., Насимов А. М., Аронбаев С. Д. // Расмий ахборотнома. Фойдали моделлар. — 2014. — № 7.
- «Анализатор АОА», ООО НПП «Полиант». Технические условия.
- Аронбаев Д. М., Тен В. А., Аронбаев С. Д., Насимов А. М., Мусаева С. А. Портативный датчик для измерения антиоксидантной активности // Каталог VII Республиканской ярмарки инновационных идей, технологий и проектов. Промышленность. 1.1.25. Ташкент, 2014. — С.68–69.
- Аронбаев Д. М., Тен В. А., Насимов А. М., Аронбаев С. Д., Кабулов Б. А. Амперометрический датчик для измерения суммарной антиоксидантной активности биопрепаратов // Тез. докл. II съезда Аналитика России — 2013. — Москва,2013. — С.157.
- ТУ 4215–003–41541647–98 Аналитический кулонометр «Эксперт-006». Технические условия.
- Анализатор многофункциональный потенциометрический «МПА-1". Каталог приборов ООО «Ива», научно-производственное внедренческое предприятие //http://ekb.neobroker.ru/Analizator-mnogofunkcionalnyi-potenciometricheskii-MPA-1_15764372.html
- Брайнина Х. З., Иванова А. В., Шарафутдинова Е. Н. Оценка антиоксидантной активности пищевых продуктов методом потенциометрии // Известия высших учебных заведений // Пищевая технология. — 2004. — № 4. — C. 73–75.
- Патент РФ № 2486499 G01N 27/26 Способ определения оксидантной /антиоксидантной активности веществ и устройство для его осуществления. / Брайнина Х. З., Герасимова Е. Л., Ходос М. Я., Викулова Е. В., Чернов В. И., Носкова Г. Н.
- Аронбаев Д. М., Тен В. А., Аронбаев С. Д., Насимов А. М., Юлаев М. Ф. Универсальный микропроцессорный анализатор для измерения антиоксидантной активности // Каталог VIII Республиканской ярмарки инновационных идей, технологй и проектов. — Ташкент, 2015. — С.185–186
- Аронбаев Д. М., Тен В. А., Юлаев М. Ф., Аронбаев С. Д. Исследование антиоксидантной активности растительности Ферганской долины // Молодой ученый. — 2015, № 4(84).- С. 30–34.
- Аронбаев Д. М. Апробация метода и прибора для определения антиоксидантной активности лекарственных растений и фитосборов на их основе // МНО «Inter-Medical», 2015 № 8 с.17–21.
- Aronbaev D. M. Determination of the antioxidant activity of plants and herbal teas using theanalizer Sigma-AOA //World Science. -2016.-9(13).-Vol.2. –P.5–8.
- Аронбаев Д. М., Аронбаев С. Д., Федоров Ф. Ф., Шертаева А. А. Определение антиоксидантной активности марочных, коллекционных и ординарных вин ОАО «Самаркандский винкомбинат им. М.Ховренко» // Universum: химия и биология. — 2017. — 2(32). /
- Прибор для определения антиоксидантной активности ЦветЯуза-01-АА. Каталог приборов НПО «Химавтоматика». // http://medprom.ru/ medprom/594240
- Яшин А. Я., Яшин Я. И. Аналитические возможности жидкостного хроматографа «ЦветЯуза» с электрохимическими детекторами // Рос.хим. журн. — 2002. — Т. 66, № 4. — С. 109–115.
- Яшин Я. И., Яшин А. Я. Анализ пищевых продуктов и напитков методами высокоэффективной жидкостной и ионной хроматографии с электрохимическими детекторами // Журн. аналит. химии. — 2004. — Т. 59, № 12. — С. 1237–1243.
- Яшин Я. И., Рыжнев В. Ю., Яшин А. Я., Черноусова Н. И. Природные антиоксиданты. Содержание в пищевых продуктах и их влияние на здоровье и старение человека. — М., 2009.