В данной статье рассмотрена одна из причин снижения производительности в машиностроении и предложен современный метод, применяющийся в данный момент на практике, который решает эту задачу.
Ключевые слова: машиностроение, режущие инструменты, обработка плазмой, детали машин, износостойкость инструмента
К настоящему времени сложилась ситуации в машиностроении, которая требует неотложного решения. Из-за того, что экономические ресурсы машиностроительных предприятий снизились, то возросло количество приобретения дешевых и малоресурсных деталей из других стран, что является выпускаемой продукции. Такие дешевые детали является одной из главных причин отказов техники и ее простоя, замены либо постоянного ремонта. Ведь долговечность — это важнейшее для конечного потребителя параметр в деталях машин, определяющий себестоимость выпускаемой заводом продукции, материальные и энергетические затраты [3].
Таким образом, изначально упрочняя деталь можно добиться увеличения эффективности машиностроительного производства. Так как затраты на изначальное упрочнение детали обходиться дешевле, чем ее замена на новую, из-за чего время ее эксплуатации повышается. В настоящее время ведется активный поиск прогрессивной упрочняющей обработки деталей машин. Один из таких способов является плазменная обработка. Данный метод нашел применение во многих отраслях машиностроения, как в выпуске единичной продукции, так и в массовом производстве [4].
Его сущность заключается в термических фазовых и структурных превращениях, происходящих при быстром нагреве обрабатываемой поверхности детали концентрированной энергией с помощью плазменной струи и дальнейшем теплоотводе из материала детали. Рассмотрим процесс данной обработки поэтапно:
‒ — подготовка заготовки к упрочнению: предварительная термообработка (закалка либо отпуск), обработка механическая (шлифовка или заточка);
‒ — сам процесс плазменного упрочнения, используя следующие варианты плазменного упрочнения: с зазором между зернами которые были упрочнены; упрочнение с перекрытием упрочненных зон; упрочнение поверхности изделия без оплавления; с оплавлением поверхности обрабатываемого изделия и упрочнение в комбинации с другими способами обработки поверхностей.
Плазменное упрочнение при котором поверхность детали не оплавляют является самым распространенным, так как обеспечивает заданное качество шероховатости, достигнутого предшествующей механической обработкой. Упрочнение с оплавлением обрабатываемой поверхности находит применение, когда нужно получить индивидуальные эксплуатационные свойства. К примеру, обработка детали, к которой не предъявляют высокие требования по шероховатости поверхности. Упрочнение деталей без перекрытия зон ведет к получению твердости равномерно распределенной по всей поверхности заготовки, а с перекрытием, наоборот, к появлению неравномерной твердости из-за образования зон отпуска.
‒ следующий этап — это контроль качества процесса упрочнения, включающий: механические испытания и измерение твердости;
‒ в завершении производят окончательную механическую либо термическую обработку [2].
Если рассматривать конкретное применение плазменной обработки для металлорежущих резцов, то по данным статистики промышленных предприятий до 40 % инструмента выходят из строя преждевременно из-за макро- и микро разрушений: выкрашиваний, поломок, сколов на поверхности.
Плазменное упрочнение способствует повышению устойчивости к трещинам режущей стали. А при выполнении комплекса упрочнений по режимам, включая финишный объемный отпуск, разрушение резца значительно замедляется.
Металл упрочненной зоны при обработке плазмой не образовывает трещин при шлифовке и не снижается прочность при его заточке или перешлифовке, что позволило снизить припуски на шлифовку и тем самым повысить экономию материала.
В целом базовая стойкость резцов по данным статистики промышленных предприятий обычно находится в пределах ±50 %, что вызвано отклонениями от стандартных режимов объемной термообработки инструмента, нарушением требований к заточке, неправильным выбором режимов резания и неудовлетворительным состоянием станочного парка. Но применения плазменное упрочнение можно добиться снижения разброса показателя стойкости инструмента до ±20 % [3]. Преимущества плазменной обработки по сравнению с другими методами:
- Возможность получить на поверхности детали упрочненный слой глубиной до 5 мм при однократной или многократной обработке, как с оплавлением так и без оплавления поверхности, что имеет значительно преимущество перед такими способами, как лазерное, электронно-лучевое упрочнение, химико-термическую обработку, осаждение покрытий ионными и вакуумными методами;
- Можно получать твердость в упрочненном слое до HV 1200 на стальных и чугунных изделиях, что превосходит такие способы, как объемную печную закалку и закалку токами высокой частоты;
- Возможность использовать плазменную обработку в комплексе с объемной закалкой или восстановительной наплавкой при любом сочетании операций;
- Появляется возможность локально упрочнить наиболее изнашиваемые участки рабочей поверхности изделия;
- Сохранить требуемую шероховатость рабочей поверхности при упрочнении без оплавления;
- Достичь высоких экономических показателей, благодаря простоте и доступности оборудования, низкой стоимости процесса в сочетании с высокой производительностью;
- Возможность замены дорогостоящих материалов на более доступные и недорогие, для их дальнейшего упрочнения;
- Процесс обработки автоматизирован [1].
Таким образом, предлагаемая технология позволяет увеличить твердость поверхностного слоя резца минимум на 20 % по сравнению с обычной термической обработкой. И иметь высокое качество обработки и производительность в сочетании с низкой стоимостью процесса.
Литература:
- Батаев А. А. Материалы 51-й Международной научной студенческой конференции «Студент и научно-технический прогресс»: Новые материалы и технологии / Новосиб. гос. ун-т. Новосибирск. — 2013–87 с.
- Бисалиев Р. В., Сентябрев Н. Н., Церцвадзе М. Г., Тенденции и инновации современной науки: Материалы VIII Международной научно-практической конференции (тезисы докладов). 18 июня 2013 г.: Сборник научных трудов. — Краснодар. — 2013. — 104 с.
- Евдокимов В. Д. Технология упрочнения машиностроительных материалов: НГГУ им. Петра Могилы. — 2005. — 352 с.
- Лащенко Г. И. Плазменное упрочнение и напыление. Экотехнология — 2003. — 68 с.