Создание приложений «Генератор» и «Осциллограф» для работы со звуковыми сигналами | Статья в журнале «Молодой ученый»

Автор:

Рубрика: Технические науки

Опубликовано в Молодой учёный №28 (132) декабрь 2016 г.

Дата публикации: 15.12.2016

Статья просмотрена: 166 раз

Библиографическое описание:

Кузин Д. А. Создание приложений «Генератор» и «Осциллограф» для работы со звуковыми сигналами // Молодой ученый. — 2016. — №28. — С. 107-110. — URL https://moluch.ru/archive/132/36833/ (дата обращения: 25.05.2018).



Для проведения лабораторной работы по акустике и звуковому вещанию необходимо использовать определенно программно-аппаратное обеспечение: линейка микрофонов, генератор синусоидального сигнала, звуковой динамик, осциллограф. Стояла задача минимизировать количество оборудования и время, затрачиваемое на подключение приборов и подготовку студии к лабораторной работе.

Ключевые слова: генератор, осциллограф, микрофон, анализ звука, лабораторная работа

Лабораторная работа подразумевает подключение сразу три довольно крупных устройства:

  1. Линейка микрофонов (рисунок 1) — штатив с коробом, включающим в себя 4 микрофона, которые соединены в горизонтальной плоскости. С помощью кнопок на верхней части короба осуществляется включение и выключение необходимых микрофонов. Питание осуществляется от сети 220 В. Звуковой кабель, объединяющий микрофоны и несущий сигнал на осциллограф, имеет разъем BNC (коаксиальный радиочастотный разъем).

Рис. 1. Реализация линейки микрофонов

  1. Генератор, используемый в данной работе необходим для создания синусоидального сигнала определенной частоты и уровня. Имеет довольно большие размеры и немалый вес (рисунок 2), что усложняет перенос данного устройства в необходимое место.

Рис. 2. Генератор сигналов

  1. Звуковой динамик — требуется для преобразования электромагнитного сигнала с генератора в звуковой сигнал.
  2. Осциллограф необходим для анализа сигнала, который создается генератором и воспроизводится колонкой. Используется для определения уровня сигнала в зависимости от направленности линейки микрофонов и различных вариаций подключений микрофонов (1-ый и 4-ый, 2-ой и 3-ий, все четыре активны). Так же, как и генератор имеет довольно крупные размеры (рисунок 3), что осложняет его перенос и подключение.

Рис. 3. Осциллограф

Для упрощения исполнения лабораторной работы было принято решение реализовать генератор и осциллограф с помощью звуковой карты ноутбука. Данное устройство имеет компактные размеры, что позволяет его с легкостью переносить и устанавливать в любом удобном месте. Также удалось освободить генератор и осциллограф для использования их в других лабораторных работах. На компьютере с помощью среды разработки LabVIEW удалось реализовать программу, позволяющую генерировать сигнал необходимой частоты, а управление частотой осуществляется в удобном интерфейсе пользователя (рисунок 4).

Рис. 4. Реализация интерфейса пользователя приложения «Генератор»

Графический код программы «Генератор» написанный на LabVIEW преведен на рисунке 5.

Рис. 5. Реализация приложения «Генератор» в среде программирования LabVIEW

Для улучшения качества передачи звукового сигнала лучше использовать внешний динамик (колонку), а не встроенные динамики ноутбука. Кабель, который раньше имел разъем BNC теперь заменен кабелем со стандартным разъемом 3.5 mm (TRC). Теперь гораздо проще, в случае повреждения кабеля, заменить его, т. к. кабели с разъемами 3.5 mm mini-jack более распространены в настоящее время и их легче найти. Также можно использовать качественные звуковые кабели для уменьшения влияния фидерного тракта.

Далее я приведу пример приложения «Осциллограф», которое было также написано на LabVIEW. Оно позволяет отслеживать характеристики звукового сигнала, снимаемого с линейки микрофонов, как в реальном времени, так и обрабатывать сигнал, сохраненный в памяти программы. На рисунке 6 изображен интерфейс пользователя приложения «Осциллограф».

Рис. 6. Реализация интерфейса пользовтеля приложения «Осциллограф»

Сверху мы видим график звукового сигнала в памяти устройства, снизу изображен график сигнала в реальном времени. Практическую реализацию приложения «Осциллограф» в графической среде разработки LabVIEW можно увидеть на рисунке 7.

Рис. 7. Приложение «Осциллограф» в среде разработке LabVIEW

Таким образом удалось полностью заменить генератор и осциллограф для исследования звуковых сигналов в некоторых лабораторных работах по акустике. Упрощение работы с осциллографом и генератором, написанными на LabVIEW, позволяют уделять больше времени на исследование звукового сигнала, а не тратить его на перенос, установку, и подключение устаревших осциллографов и генераторов. Также данные приложения, в случае необходимости, позволяют автоматизировать процесс измерения характеристик звукового сигнала. Но в данной статье этот код не приводится, т. к. задача лабораторной работы состоит в том, чтобы выработать у студентов навыки измерения характеристик направленности антенны, состоящей из n-микрофонов, позволить им получить практические навыки измерения параметров антенны. Полная автоматизация измерения в данном случае не требовалась.

Основные термины (генерируются автоматически): лабораторная работа, звуковой сигнал, BNC, генератор, линейка микрофонов, осциллограф, звуковой динамик, TRC, реальное время, синусоидальный сигнал.


Ключевые слова

лабораторная работа, генератор, микрофон, осциллограф, анализ звука

Обсуждение

Социальные комментарии Cackle
Задать вопрос