Знания человечества об эндогенных процессах минералообразования основываются на представлениях о деятельности магматических очагов, располагающихся в нижних частях земной коры. Сами процессы, совершающиеся на значительных глубинах, недоступны нашему наблюдению. Лишь в районах, действующих на земной поверхности вулканов можно получить некоторые данные, позволяющие иметь суждение о глубинных процессах.
С другой стороны, данные изучения состава, структурных особенностей, условий залегания и взаимоотношений различных изверженных пород и пространственно связанных с ними месторождений полезных ископаемых также дают возможность получить некоторые представления (в соответствии с физико-химическими законами) о закономерностях, свойственных эндогенным процессам минералообразования.
Ключевые слова: магматизм, гидротерма, пегматит, очаг
Магмы являются сложными по составу силикатными огненно-жидкими расплавами, в которых принимают участие и летучие составные части.
В тех случаях, когда значительные массы магмы, не достигая самой поверхности, проникают в верхние части земной коры, они под большим внешним давлением подвергаются медленному остыванию и дифференциации, продукты которой в результате кристаллизации дают начало различным изверженным силикатным породам. При этом тяжелые металлы (такие как Sn, W, Mo, Au, Ag, Pb, Zn, Сu и др.), присутствующие в магмах в ничтожных количествах, образуют с летучими компонентами (Н2О, S, F, Cl, В и др.) легко растворимые соединения и по мере кристаллизации магмы концентрируются в верхних частях магматических очагов.
В одних случаях с их помощью образуются остаточные силикатные растворы, при кристаллизации которых возникают так называемые пегматиты, содержащие минералы с F, В, Be, Li, Zr, а иногда с редкоземельными элементами и др. В других случаях они в виде газообразных продуктов удаляются из магматических очагов, оказывая сильные контактные воздействия на вмещающие породы, с которыми вступают в химические реакции. Наконец, в виде водных растворов — гидротерм — они уносятся вдоль трещин в кровлю над магматическими массивами, образуя нередко богатые месторождения главным образом металлических полезных ископаемых.
В соответствии с указанной последовательностью развития магматического цикла явлений различают следующие этапы эндогенных процессов минералообразования: 1) магматический; 2) пегматитовый; 3) пневматолито-гидротермальный.
По условиям образования различают прежде всего две главные группы магматических пород: а) эффузивные или экструзивные, излившиеся на земную поверхность в виде лав или быстро застывшие в непосредственной близости ее в условиях низкого внешнего давления; б) интрузивные, медленно застывшие на глубине под высоким давлением в виде больших грибообразных, пластообразных и неправильной формы массивов. В зависимости от содержания кремнезема и других компонентов среди изверженных пород также существуют свои различия.
Таблица 1
|
СодержаниеSiO2 |
Содержание прочих компонентов |
Интрузивные породы |
Эффузивные породы |
ультраосновные |
< 45 % |
богатые MgO и FeO |
дуниты, пироксениты |
пикриты |
основные |
45–55 % |
богатые Аl2О3 и CaO, но более бедные MgO, FeO |
габбро, нориты |
базальты, диабазы |
среднекислые |
55–65 % |
бедные CaO, но обогащенные щелочами |
диориты, кварцевые диориты |
порфириты, андезиты |
кислые |
> 65 % |
богатые щелочами, но бедные CaO, FeO, MgO |
гранодиориты, граниты |
липариты, кварцевые порфиры |
щелочные |
~ 55 % |
богатые щелочами и Аl2О3 |
- |
Нефелиновые сиениты |
Рудные месторождения магматического происхождения встречаются лишь в ультраосновных и основных изверженных породах. К ним принадлежат месторождения Cr, Pt и других металлов платиновой группы, а также Сu, Ni, Co, Fe, Ti и др.
В богатых щелочами интрузивных породах (нефелиновых сиенитах) встречаются месторождения редких земель — ниобия, тантала, титана, циркония, и неметаллических полезных ископаемых — фосфора (апатита), глиноземного сырья (нефелина) и др.
Пегматиты как геологические тела наблюдаются в виде жил или неправильной формы залежей, иногда штоков, характеризующихся необычайной крупнозернистостью минеральных агрегатов. Мощность жилообразных тел достигает нередко нескольких метров, а по простиранию они обычно прослеживаются на десятки, реже сотни метров. Большей частью пегматитовые тела располагаются среди материнских изверженных пород, но иногда встречаются в виде жилообразных тел и во вмещающих данный интрузив породах.
Процессы образования пегматитов протекают в верхних краевых частях магматических массивов и притом в тех случаях, когда эти массивы формируются на больших глубинах (несколько километров от поверхности Земли) в условиях высокого внешнего давления, способствующего удержанию в магме в растворенном состоянии летучих компонентов, реагирующих с ранее выкристаллизовавшейся породой.
По своему составу пегматиты немногим отличаются от материнских пород: главная масса их состоит из тех же породообразующих минералов. Лишь второстепенные (по количеству) минералы, да и то не во всех типах пегматитов, существенно отличаются по составу, так как содержат ценные редкие химические элементы, часто в ассоциации с минералами, содержащими летучие компоненты. Так, например, в гранитных пегматитах в дополнение к главнейшим породообразующим минералам (полевые шпаты, кварц, слюды) наблюдаются фтор и борсодержащие соединения (топаз, турмалины), минералы бериллия (берилл), лития (литиевые слюды), иногда редких земель, ниобия, тантала, олова, вольфрама и др.
Происхождение пегматитов еще нельзя считать до конца разгаданным. А. Е. Ферсман рассматривал их как продукт кристаллизации остаточных расплавов, обогащенных летучими соединениями. Позже академик А. Н. Заварицкий, и его последователи на основании физико-химических соображений допускали возможность образования крупнокристаллических масс путем перекристаллизации материнских пород под влиянием газов, накапливающихся в магматическом остатке, получающемся в процессе кристаллизации магмы.
Пневматолито-гидротермальные процессы по существу являются постмагматическими, т. е. протекают после того, как главный процесс кристаллизации магмы в глубинном массиве в основном закончился.
На больших и средних глубинах отделяющиеся от расплава летучие компоненты (включая воду) представляют собой флюид, находящийся в относительном равновесии с кристаллизующимися из расплава минералами. Однако такой флюид не равновесен совмещающими породами и поэтому является по отношению к ним агрессивной средой. В этом случае флюид устремляется к вмещающим породам и, химически реагируя с ними, производит так называемый контактовый метасоматоз. При этом в боковых породах (в кровле), пропитывающихся растворами, протекают химические реакции. Степень преобразования и состав получающихся продуктов в значительной мере зависят не столько от температуры, сколько от химической активности раствора и состава реагирующих с ними пород.Воздействие обогащенных фтором и редкими элементами флюидов на сложенные терригенными осадочными породами породы кровли гранитоидных интрузий приводит к образованию грейзенов, существенно кварцевых пород, обогащенных слюдами, топазом, бериллиевыми минералами и флюоритом. Грейзены нередко вмещают руды вольфрама, молибдена, олова и висмута.
Гидротермальные процессы в глубинных условиях развиваются в кровле, на некотором удалении от непосредственного контакта с изверженными породами. Согласно гипотезе У.Эммонса кислая магма является источником как воды гидротермальных растворов, так и металлов, переносимых в растворенной форме из магматического очага в области рудоотложения. Остаточные надкритические растворы (флюиды), используя для своего продвижения системы трещин, возникающих при внедрениях магмы в кровле магматических очагов (рис.1), постепенно охлаждаются и при температурах от 400 до 370° С сжижаются, превращаясь в горячие водные растворы — гидротермы.
Рис. 1. Общая схема расположения гидротермальных образований. Крестиками показаны изверженные породы
Наиболее благоприятные условия для проявления гидротермальных процессов создаются на малых и средних глубинах (до 3–5 км от поверхности). Главная масса гидротермальных образований пространственно и генетически связана с интрузивами кислых пород (гранитов, гранодиоритов и др.). Сфера циркуляции раствора, начинаясь почти от верхних частей магматических очагов, достигает иногда дневной поверхности.
Образование гидротермальных растворов продолжается, очевидно, весьма длительное время — в течение всего периода жизни магматического очага. На основании анализа фактических данных о соотношениях различных месторождений, составляющих один рудный узел, С. С. Смирнов пришел к выводу о прерывистом движении рудоносных растворов в связи с неоднократным возобновлением процессов трещинообразования. Об этом говорят нередко наблюдающиеся признаки наложения более поздних стадий минерализации на более ранние.
Литература:
- Ананьев В. П.. Инженерная геология. — М.: Высшая школа, 2007. — 575 с.
- Ананьев В. П. Минералогия и петрография. — Ростов-на-Дону: Рост. гос. акад. стр-ва, 1993. — 84 с.
- Бетехтин А. Г. Курс минералогии. — М.: КДУ, 2007. — 273 с.