Излучение атома и плазмы | Статья в журнале «Молодой ученый»

Автор:

Рубрика: Физика

Опубликовано в Молодой учёный №15 (119) август-1 2016 г.

Дата публикации: 03.08.2016

Статья просмотрена: 112 раз

Библиографическое описание:

Рыков Е. А. Излучение атома и плазмы // Молодой ученый. — 2016. — №15. — С. 95-97. — URL https://moluch.ru/archive/119/33086/ (дата обращения: 18.11.2018).



В статье рассматривается излучение атома и на его основе рассматривается излучение плазмы газового разряда. Применение излучения атомов и молекул в области построения спектров излучения и анализ с его помощью.

Ключевые слова: излучение атома, механизмы плазменного излучения, методы спектрального анализа, спектры излучения, формула Ридберга

Сегодня, в любой области науки и производства используется спектральный анализ, основанный с помощью излучения атома вещества. Спектральный анализ позволяет существенно повысить точность определения состава вещества без внесения каких-либо вспомогательных тел.

  1. Излучение атома иплазмы.

Возникновение атомного спектра характеризуется поглощением излучения или его испусканием, состоящий в совокупности из единичных спектральных линий свободных атомов газа [2]. Такой спектр характеризуется отдельным параметром — частотой излучения, которая в свою очередь равняется энергии межуровневым переходом атома:

hv = E2 — E1.

Фактически все спектры излучения атома располагаются в видимых и ультрафиолетовых областях, длина волны которых достигает от 200 до 1190 нм.

Возбудить атом для получения излучения можно разными способами, в основном это сообщение энергии через тепловое столкновение или электронным ударом. За время нахождения в возбужденном состоянии атом теряет большую долю своей энергии на испускание кванта электромагнитного излучения.

Также как и в излучении в атоме, в плазме излучение характеризуется интенсивностью процессов испускания или поглощения электромагнитной энергии [1]. Спектральная излучательная способность представляет собой распределение фотонов по длине волны, создаваемых в единице объема плазмы.

Одним из главных видов потерь плазмы как раз и является ее излучение. Данный вид получения энергии довольно широко используют в данное время в промышленности.

Способы (механизмы) плазменного излучения можно разделить на следующие, которые описываются либо собственными свойствами отдельных заряженных частиц, в иных случаях нейтральных, которые образуют плазму, либо свойствами коллективного взаимодействия — колебательно-волновыми [1]. Существует несколько основных видов индивидуального излучения отдельных частиц, такие как:

− излучение линейчатого характера, получаемое при переходе электрона с одного энергетического уровня на другой, один из самых используемых излучений плазмы для исследования;

− излучение фоторекомбинационного характера возникает, если электрон с определенной энергией может поглотиться на одном из энергетических уровней, происходит некий захват частиц, или рекомбинация;

− тормозное излучение свободного электрона в поле иона;

− циклотронное излучение электрона при его вращении в магнитном поле.

Эти виды плазменного излучения основываются на ускорении частиц во внешних электрических или магнитных полях. Так как все заряженные частицы в плазме двигаются по нелинейным траекториям, они характеризуются некой угловой скоростью поворота, что позволяет в свою очередь иметь представление о характерной частоте плазменного излучения. Зная все эти величины можно определить интенсивность по следующей формуле:

I = (2/3)е2w23,

где w — угловая скорость.

Большой вклад в резкое отличие интенсивности общей картины от интенсивности отдельных характерных частот вносит род поля, которое в свою очередь вызывает ускорение заряженных частиц. Спектр можно назвать дискретным, если электрон находится в состоянии периодического вращения, если нет, то спектр будет непрерывным. В случае фоторекомбинационного излучения в непрерывном спектре присутствуют резкие скачки на определенных длинах волн, которые зависят от состава излучаемого вещества. В этих скачках происходит рекомбинация электрона на один из энергетических уровней иона. В случае излучения линейчатого характера из-за низкой скорости передвижения атомов и ионов дискретность спектра не нарушается. Так как в данном излучении низкие скорости, то доплеровские сдвиги относительно малы, в ином случае, если скорость передвижения гораздо больше, например, в циклотронном излучении, то и сдвиги будут увеличиваться. Такие сдвиги в свою очередь сводят высокие гармоники в один непрерывный спектр.

Как говорилось раньше, линии интенсивности зависят от рода вещества, его атома, который определяется зарядом ядра и количеством окружающих его электронов. Спектры элементов, имеющих равное количество валентных электронов, близки по значениям друг с другом.

Определить длину световой волны можно при помощи следующей формулы, или называемой формулой Ридберга:

,

где 1,097107 м–1 постоянная Ридберга, = 3.2911015.

Численные значения 1, 2, 3… — определяют серию, а n — целочисленное значение, начинающееся с (), оно определяет отдельные линии этой серии. Эти серии распределяются на несколько видов, в зависимости от численного значения: серия Лаймана (m = 1; n = 2, 3, 4…), они расположены в ультрафиолетовой области спектра; серия Бальмера (m = 2; n = 3, 4, 5…), диапазон видимой области. Переходы, которые происходят на высших уровнях, называют серии Пашена и Брэккета (m = 3 и m = 4 соответственно), они расположены в области инфракрасного излучения. В целом можно получить следующую картину возможного излучения, в частности для атома водорода, представлена на рис. 1.

Рис. 1. Спектральные линии атома водорода

Теория Бора полностью описывает возникающий спектр атома водорода, каждая линия которого относится к излучению возникающего вследствие перехода атома из возбужденного в состояние, расположенное ниже данного [2].

Все состояния могут быть представлены одной формулой, именуемой формулой Бальмера:

.

В связи с излучением атомов в науке был введен новый спектр и анализ на его основе.

Полная картина разделения методов спектрального анализа представлена на рис. 2.

C:\Users\u5_yu.petrova\Documents\Безымянный.jpg

Рис. 2. Классификация методов спектрального анализа

Контур спектра представляется в виде суммарного распределения интенсивностей, в зависимости от длины волны. Характеризуется шириной спектральной линии и ее сдвигом. Любые возбужденные атомы не имеют точного значения, они размыты. Определяется приращением длин волн (или частот) в середине максимального значения интенсивности.

Литература:

  1. Александров А. Ф., Богданкевич Л. С., Рухадзе А. А. Основы электродинамики плазмы, М.: Высшая школа, 1988.
  2. Гарифзянов А. Р. Атомно-абсорбционная спектроскопия. К.: Казанский федеральный университет, 2009.
Основные термины (генерируются автоматически): спектральный анализ, плазменное излучение, длина волны, излучение атома, серия, непрерывный спектр, линейчатый характер, излучение атомов, излучение, атом.


Ключевые слова

спектры излучения, излучение атома, механизмы плазменного излучения, методы спектрального анализа, формула Ридберга

Похожие статьи

Исследование и моделирование спектров излучения газового...

Ключевые слова: плазма газового разряда, излучение плазмы, методы диагностики, спектры излучения, спектральный анализ, сравнительный анализ. На сегодняшний день роль плазмы газового разряда и интерес к ее изучению обусловлен тем...

Определение параметров плазмы по сравнительному анализу...

Определение параметров плазмы по сравнительному анализу реальных ипромоделированных спектров излучения. Рыков Евгений Анатольевич, студент. Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» имени В. И...

Исследование спектра ядер атома Ве с помощью...

С развитием лазерной физики, физической электроники, ядерной и радиационной физики, с применением многозарядных ионов и ядер большой интерес представляют исследования формирования ядер с поверхности твердого тела под действием излучения лазера.

Определение физических параметров радиационных процессов...

Реэлейское рассеяние аналогично с лазерным излучением. Стоксовый компоненты Рамановского спектра появляются при поглощении (когда длина волны лазерного излучения больше чем длина волны стоксового компонента) или излучения...

Электромагнитное излучение, его воздействие на человека

Все вещества постоянно распространяют электромагнитные волны. Спектр излучения захватывает значительный диапазон длин волн: от радиоволн длиной сотни метров до жесткого космического излучения с длиной волны 10–12 м. Естественный электромагнитный...

Рентгеновские спектры многозарядных ионов...

Рентгеновские спектры излучения многозарядных ионов цинка.

Рис. 2. Модельный спектр излучения (обозначен пунктиром) Nа-подобного иона ZnХХ и ZnХХI.

Таблица 2. Результаты измерений длин волн спектральных линий ионов FVIII, IХ, излучаемых областями...

Исследование генерации второй гармоники твердотельного лазера...

Эффект генерации второй гармоники используется для расширения возможного длин волн лазерного излучения. Реализуется в основном в твердотельных лазерах. Также применяется для получения зондирующего излучения.

Использование ионизирующих излучений в промышленности...

Keywords: Ionizing radiation, radiation sources, scope, application in industry. Ионизирующее излучение — это потоки фотонов, элементарных частиц или осколков деления атомов, способные ионизировать вещество. К ионизирующему излучению не относят видимый свет и...

Обсуждение

Социальные комментарии Cackle

Похожие статьи

Исследование и моделирование спектров излучения газового...

Ключевые слова: плазма газового разряда, излучение плазмы, методы диагностики, спектры излучения, спектральный анализ, сравнительный анализ. На сегодняшний день роль плазмы газового разряда и интерес к ее изучению обусловлен тем...

Определение параметров плазмы по сравнительному анализу...

Определение параметров плазмы по сравнительному анализу реальных ипромоделированных спектров излучения. Рыков Евгений Анатольевич, студент. Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» имени В. И...

Исследование спектра ядер атома Ве с помощью...

С развитием лазерной физики, физической электроники, ядерной и радиационной физики, с применением многозарядных ионов и ядер большой интерес представляют исследования формирования ядер с поверхности твердого тела под действием излучения лазера.

Определение физических параметров радиационных процессов...

Реэлейское рассеяние аналогично с лазерным излучением. Стоксовый компоненты Рамановского спектра появляются при поглощении (когда длина волны лазерного излучения больше чем длина волны стоксового компонента) или излучения...

Электромагнитное излучение, его воздействие на человека

Все вещества постоянно распространяют электромагнитные волны. Спектр излучения захватывает значительный диапазон длин волн: от радиоволн длиной сотни метров до жесткого космического излучения с длиной волны 10–12 м. Естественный электромагнитный...

Рентгеновские спектры многозарядных ионов...

Рентгеновские спектры излучения многозарядных ионов цинка.

Рис. 2. Модельный спектр излучения (обозначен пунктиром) Nа-подобного иона ZnХХ и ZnХХI.

Таблица 2. Результаты измерений длин волн спектральных линий ионов FVIII, IХ, излучаемых областями...

Исследование генерации второй гармоники твердотельного лазера...

Эффект генерации второй гармоники используется для расширения возможного длин волн лазерного излучения. Реализуется в основном в твердотельных лазерах. Также применяется для получения зондирующего излучения.

Использование ионизирующих излучений в промышленности...

Keywords: Ionizing radiation, radiation sources, scope, application in industry. Ионизирующее излучение — это потоки фотонов, элементарных частиц или осколков деления атомов, способные ионизировать вещество. К ионизирующему излучению не относят видимый свет и...

Задать вопрос