Кубический числовой образ на примерах | Статья в журнале «Молодой ученый»

Автор:

Рубрика: Математика

Опубликовано в Молодой учёный №12 (116) июнь-2 2016 г.

Дата публикации: 06.06.2016

Статья просмотрена: 40 раз

Библиографическое описание:

Элмуродова Х. Б. Кубический числовой образ на примерах // Молодой ученый. — 2016. — №12. — С. 70-73. — URL https://moluch.ru/archive/116/30913/ (дата обращения: 18.10.2018).



Для линейного оператора в гильбертовом пространстве с областью определения множество называется его числовым образом. Известно, что точечный спектр оператора лежит в , а его аппроксимативно точечный спектр содержится в , см. например [1].

Для того, чтобы получить более точную информацию о спектре, в работе [2] введено понятие квадратичный числовой образ, затем изучена в работе [3]. Это множество определено, если дано разложение и , где и гильбертово пространство, а пространство линейных ограниченных операторов в гильбертовом пространстве . Тогда оператор всегда записывается в виде блочно–операторной матрицы

(1)

с линейными ограниченными операторами , .

Для полноты дадим определение квадратичной численной области значений оператора . Пусть и –скалярное произведение и норма в , , соответственно. Множество всех собственных значений матрицы

таких, что , называется квадратичной числовой образ оператора , соответствующей представлению (1) блочно-операторной матрицы и обозначается как , т. е. .

Пусть теперь дано прямая сумма трех гильбертовых пространствах , и , а также оператор . Тогда оператор всегда записывается в виде блочно–операторной матрицы

(2)

с линейными ограниченными операторами , .

Множество всех собственных значений матрицы

таких, что , называется кубической числовой образ оператора , соответствующей представлению (2) блочно-операторной матрицы и обозначается как , т. е. .

Для двум различным разложениям гильбертово пространства , могут соответствовать различные кубические числовые образы. Приведем некоторые факты и примеры. Заметим, что кубическая числовая образ всегда содержится в числовом образе: . При этом если операторная матрица имеет нижнюю или верхнюю треугольную форму, т. е.

или ,

то .

Аналогично числового образа значений, кубическый числовой образ ограниченной блочно-операторной матрицы является ограниченным подмножеством множество : и оно замкнуто если .

Пример 1. Кубический числовой образ матрицы

соответствующий разложений имеет вид:

Пример 2. Кубический числовой образ матрицы

соответствующий разложений имеет вид:

Пример 3. Кубический числовой образ матрицы

соответствующий разложений имеет вид:

Пример 4. Кубический числовой образ матрицы

соответствующий разложений имеет вид:

Литература:

  1. Т. Като. Теория возмущения линейных операторов. М.: Мир, 1972.
  2. H. Langer, C. Tretter. Spectraldecomposition of some nonselfadjoint block operator matrices. J. Operator Theory, 39:2 (1998), 339–359.
  3. H. Langer, A. S. Markus, V. I. Matsaev, C. Tretter. A new concept for block operator matrices: the quadratic numerical range. Linear Algebra Appl., 330:1–3 (2001), 89–112.
Основные термины (генерируются автоматически): кубический числовой образ, гильбертово пространство, числовой образ, операторная матрица, блочно-операторная матрица, собственное значение матрицы, вид, множество, оператор, числовой образ оператора.


Похожие статьи

Квадратичный числовой образ одной 2x2 операторной матрицы

Одним из классических методов изучения спектра линейного оператора в гильбертовом пространстве с областью определения является изучение его числового образа: . Пусть , и - множества всех целых, вещественных и комплексных чисел, соответственно.

Числовой образ матрицы размера 3х3 в частных случаях

Пусть гильбертово пространство и линейный оператор с областью определения . Тогда множество называется числовым образом оператора [1–3]. Из определения видно, что множество является подмножеством комплексной плоскости и геометрические свойства дают...

Спектр и квадратичный числовой образ обобщенной модели...

гильбертово пространство, числовой образ, квадратичный числовой образ, спектр оператора, оператор, точечный спектр оператора, обобщенная модель, множество, вещественное число, блочно-операторная...

Описание множества собственных значений одной блочной...

Блочно-операторные матрицы — это матрицы, элементы которых являются линейными операторами, определенными между банаховым или гильбертовым пространством. Такие операторы возникают в статистической физике, теории твердого тела...

Нули определителя Фредгольма, соответствующие одной...

гильбертово пространство, оператор, собственное значение оператора, существенный спектр оператора, существенный спектр, операторная матрица, ограниченный самосопряженный оператор.

Формула для числового образа одной операторной матрицы

Тогда оператор всегда записывается в виде блочнооператорной матрицы.

Для линейного оператора в гильбертовом пространстве с областью определения его числовой образ определяется следующим образом

О спектре дополнения Шура одной операторной матрицы

Блочно-операторная матрица — это матрица элементы которой являются линейными операторами в банаховым или гильбертовом пространстве [1]. Пусть и -три гильбертовы пространства и . Тогда известно, что всякий линейный ограниченный оператор...

Числовой образ линейных операторов: основные свойства...

Ключевые слова: числовой образ, выпуклые множества, матрица, линейный оператор, точечный и аппроксимативно точечный спектры, ядро спектра, оператор левого сдвига, неравенство Коши-Буняковского. 1. Введение. Пусть комплексное гильбертово пространство...

Условия существования собственных значений одной...

Блочно-операторная матрица — это матрица, элементы которой являются линейными операторами в банаховом или гильбертовом пространствах [1]. Одним из специальных классов блочно-операторных матриц являются Гамильтонианы системы с несохраняющимся...

Квадратичный числовой образ одной 2x2 операторной матрицы

Одним из классических методов изучения спектра линейного оператора в гильбертовом пространстве с областью определения является изучение его числового образа: . Пусть , и - множества всех целых, вещественных и комплексных чисел, соответственно.

Числовой образ матрицы размера 3х3 в частных случаях

Пусть гильбертово пространство и линейный оператор с областью определения . Тогда множество называется числовым образом оператора [1–3]. Из определения видно, что множество является подмножеством комплексной плоскости и геометрические свойства дают...

Спектр и квадратичный числовой образ обобщенной модели...

гильбертово пространство, числовой образ, квадратичный числовой образ, спектр оператора, оператор, точечный спектр оператора, обобщенная модель, множество, вещественное число, блочно-операторная...

Описание множества собственных значений одной блочной...

Блочно-операторные матрицы — это матрицы, элементы которых являются линейными операторами, определенными между банаховым или гильбертовым пространством. Такие операторы возникают в статистической физике, теории твердого тела...

Нули определителя Фредгольма, соответствующие одной...

гильбертово пространство, оператор, собственное значение оператора, существенный спектр оператора, существенный спектр, операторная матрица, ограниченный самосопряженный оператор.

Формула для числового образа одной операторной матрицы

Тогда оператор всегда записывается в виде блочнооператорной матрицы.

Для линейного оператора в гильбертовом пространстве с областью определения его числовой образ определяется следующим образом

О спектре дополнения Шура одной операторной матрицы

Блочно-операторная матрица — это матрица элементы которой являются линейными операторами в банаховым или гильбертовом пространстве [1]. Пусть и -три гильбертовы пространства и . Тогда известно, что всякий линейный ограниченный оператор...

Числовой образ линейных операторов: основные свойства...

Ключевые слова: числовой образ, выпуклые множества, матрица, линейный оператор, точечный и аппроксимативно точечный спектры, ядро спектра, оператор левого сдвига, неравенство Коши-Буняковского. 1. Введение. Пусть комплексное гильбертово пространство...

Условия существования собственных значений одной...

Блочно-операторная матрица — это матрица, элементы которой являются линейными операторами в банаховом или гильбертовом пространствах [1]. Одним из специальных классов блочно-операторных матриц являются Гамильтонианы системы с несохраняющимся...

Обсуждение

Социальные комментарии Cackle

Похожие статьи

Квадратичный числовой образ одной 2x2 операторной матрицы

Одним из классических методов изучения спектра линейного оператора в гильбертовом пространстве с областью определения является изучение его числового образа: . Пусть , и - множества всех целых, вещественных и комплексных чисел, соответственно.

Числовой образ матрицы размера 3х3 в частных случаях

Пусть гильбертово пространство и линейный оператор с областью определения . Тогда множество называется числовым образом оператора [1–3]. Из определения видно, что множество является подмножеством комплексной плоскости и геометрические свойства дают...

Спектр и квадратичный числовой образ обобщенной модели...

гильбертово пространство, числовой образ, квадратичный числовой образ, спектр оператора, оператор, точечный спектр оператора, обобщенная модель, множество, вещественное число, блочно-операторная...

Описание множества собственных значений одной блочной...

Блочно-операторные матрицы — это матрицы, элементы которых являются линейными операторами, определенными между банаховым или гильбертовым пространством. Такие операторы возникают в статистической физике, теории твердого тела...

Нули определителя Фредгольма, соответствующие одной...

гильбертово пространство, оператор, собственное значение оператора, существенный спектр оператора, существенный спектр, операторная матрица, ограниченный самосопряженный оператор.

Формула для числового образа одной операторной матрицы

Тогда оператор всегда записывается в виде блочнооператорной матрицы.

Для линейного оператора в гильбертовом пространстве с областью определения его числовой образ определяется следующим образом

О спектре дополнения Шура одной операторной матрицы

Блочно-операторная матрица — это матрица элементы которой являются линейными операторами в банаховым или гильбертовом пространстве [1]. Пусть и -три гильбертовы пространства и . Тогда известно, что всякий линейный ограниченный оператор...

Числовой образ линейных операторов: основные свойства...

Ключевые слова: числовой образ, выпуклые множества, матрица, линейный оператор, точечный и аппроксимативно точечный спектры, ядро спектра, оператор левого сдвига, неравенство Коши-Буняковского. 1. Введение. Пусть комплексное гильбертово пространство...

Условия существования собственных значений одной...

Блочно-операторная матрица — это матрица, элементы которой являются линейными операторами в банаховом или гильбертовом пространствах [1]. Одним из специальных классов блочно-операторных матриц являются Гамильтонианы системы с несохраняющимся...

Квадратичный числовой образ одной 2x2 операторной матрицы

Одним из классических методов изучения спектра линейного оператора в гильбертовом пространстве с областью определения является изучение его числового образа: . Пусть , и - множества всех целых, вещественных и комплексных чисел, соответственно.

Числовой образ матрицы размера 3х3 в частных случаях

Пусть гильбертово пространство и линейный оператор с областью определения . Тогда множество называется числовым образом оператора [1–3]. Из определения видно, что множество является подмножеством комплексной плоскости и геометрические свойства дают...

Спектр и квадратичный числовой образ обобщенной модели...

гильбертово пространство, числовой образ, квадратичный числовой образ, спектр оператора, оператор, точечный спектр оператора, обобщенная модель, множество, вещественное число, блочно-операторная...

Описание множества собственных значений одной блочной...

Блочно-операторные матрицы — это матрицы, элементы которых являются линейными операторами, определенными между банаховым или гильбертовым пространством. Такие операторы возникают в статистической физике, теории твердого тела...

Нули определителя Фредгольма, соответствующие одной...

гильбертово пространство, оператор, собственное значение оператора, существенный спектр оператора, существенный спектр, операторная матрица, ограниченный самосопряженный оператор.

Формула для числового образа одной операторной матрицы

Тогда оператор всегда записывается в виде блочнооператорной матрицы.

Для линейного оператора в гильбертовом пространстве с областью определения его числовой образ определяется следующим образом

О спектре дополнения Шура одной операторной матрицы

Блочно-операторная матрица — это матрица элементы которой являются линейными операторами в банаховым или гильбертовом пространстве [1]. Пусть и -три гильбертовы пространства и . Тогда известно, что всякий линейный ограниченный оператор...

Числовой образ линейных операторов: основные свойства...

Ключевые слова: числовой образ, выпуклые множества, матрица, линейный оператор, точечный и аппроксимативно точечный спектры, ядро спектра, оператор левого сдвига, неравенство Коши-Буняковского. 1. Введение. Пусть комплексное гильбертово пространство...

Условия существования собственных значений одной...

Блочно-операторная матрица — это матрица, элементы которой являются линейными операторами в банаховом или гильбертовом пространствах [1]. Одним из специальных классов блочно-операторных матриц являются Гамильтонианы системы с несохраняющимся...

Задать вопрос