Автор: Мамытов Айтбай Омонович

Рубрика: Математика

Опубликовано в Молодой учёный №11 (115) июнь-1 2016 г.

Дата публикации: 25.05.2016

Статья просмотрена: 16 раз

Библиографическое описание:

Мамытов А. О. Об одной задаче определения правой части линейного дифференциального уравнения четвертого порядка // Молодой ученый. — 2016. — №11. — С. 49-53.



В работе исследована обратная задача определения правой части для дифференциального уравнения с частными производными четвертого порядка с переопределениям во внутренних точках. Сначала с помощью функции Грина исходная прямая задача сводится к эквивалентной задаче, для которой доказывается теорема существования и единственности решения. Далее, пользуясь методами обратных теории задач, доказывается существование и единственность решения рассматриваемой обратной задачи.

Ключевые слова: обратная задача, дифференциального уравнения с частными производными, функция Грина.

К настоящему времени обратные задачи превратились в бурно развивающуюся область знаний, проникающую почти во все сферы математики, включая алгебру, анализ, дифференциальные уравнения, математическую физику и др. С другой стороны, теория обратных задач широко применяется для решения практических задач почти во всех областях науки, в частности, в физике, медицине, экологии, экономике.

На данный момент в связи с проблемами геофизики, океанологии, физики атмосферы, использованием криогенных жидкостей в технике и ряда других проблем значительно возрос интерес к изучению динамики неоднородных, и в частности, стратифицированных жидкостей, которые приводят к начально-краевым задачам для уравнений с частными производными четвертого порядка.

В работе рассматривается обратная задача для дифференциальных уравнений с частными производными четвертого порядка.

Постановка задачи. Требуется найти функции f(t) иu(t,x) в области

T={(x, t)|0<x<1,},удовлетворяющие уравнению

,(1)

заданным начальным и краевым условиям,

,,,(2)

(3)

Лабиринт и известно решениеu(t,x) в точке

,(4)

где 0<T — заданная постоянная,αиβ- известные постоянные.

Предположим выполнение следующих условий:

(5)

Лемма 1. Еслито резольвентаR(t,s)ядра, представима в виде

.(6)

Доказательство.Для докакзательства покажем, что

.

В самом деле,

Лабиринт

Лемма 1 доказана.

Лемма 2. Если α>0, то функция Грина краевой задачи

записывается в виде

(7)

Доказательство.Функцию Грина G(x,) будем искать в виде

(8)

где a1,a2,b1,b2 — пока неизвестные функции.Из определения функции Грина G(x,) имеем:

,

,

,

.

Лабиринт Продифференцируем (8) по х:

Тогда

Отсюда находим

(9)

(10)

Подставляя (9) и (10) в (8), получим (7). Лемма 2 доказана.

Для решения обратной задачи (1)-(4) введем обозначение

(11)

Тогда имеют место равенства

(12)

Учитывая (11) и (12), из (1) имеем

Лабиринт . (13)

Применяя резольвенту (5) ядра , из (12) получим

(14)

Учитывая (3), из (11) имеем

(15)

Используя функцию ГринаG(x,) определенную по формуле (7)к краевой задаче (14)-(15), получим

(16)

Введя обозначение для известных функций

(17)

уравнение (16) перепишем в виде

(18)

Полагая иучитывая (4), (11), из (18) имеем

Лабиринт (19)

Пусть

где(20)

Таким образом, для определенияи v(t,x),,мыполучили систему линейных интегральных уравнений Вольтерра второго рода (18) и (19).Тем самым доказана следующая

Теорема. Пусть выполняются условия (5) и (20). Тогда обратная задача (1)-(4) имеет единственное решение {v(t,x),f(t),}из пространствагде пространство n- мерных вектор- функций с элементами из

Литература:

  1. Asanov A., Atamanov E. R. Nonclassical and Inverse Problems for Pseudoparabolic Equations. — Netherlands: VSP, Utrecht, 1997. — 152 p.
  2. Асанов А., Атаманов Э. Р. Обратная задача для операторного интегро-дифференциального псевдопараболического уравнения.- Сиб. матем. журнал.- 1995. Т.36. № 4.- С.752–762.
  3. Бухгейм А. Л. Уравнения Вольтерра и обратные задачи. — Новосибирск: Наука, 1983. — 207 с.
  4. Кабанихин С. И. Обратные и некорректные задачи. — Новосибирск: Сибирское научное издательство, 2009. — 457 с.
  5. Лаврентьев М. М. О некорректных задачах математической физики.- Новосибирск: СО АН СССР, 1962.
  6. Матанова К. Б. Обратная задача для дифференциальных уравнений с частными производными четвертого порядка // Вестник ОшГУ. Труды международной научно-теоретической конференции “Проблемы образования, науки и культуры в начале 21 века”. 2001. Вып. 4. — С. 94–100.
Основные термины (генерируются автоматически): частными производными, обратная задача, дифференциального уравнения, определения правой части, Обратная задача, обратная задача определения, обратные задачи, линейного дифференциального уравнения, дифференциальных уравнений, исходная прямая задача, задаче определения правой, интегро-дифференциального псевдопараболического уравнения, обратных теории задач, теория обратных задач, решения практических задач, дифференциальные уравнения, Сибирское научное издательство, развивающуюся область знаний, использованием криогенных жидкостей, Постановка задачи.

Обсуждение

Социальные комментарии Cackle
Задать вопрос