Существенный спектр дополнения Шура одной операторной матрицы | Статья в журнале «Молодой ученый»

Автор:

Рубрика: Математика

Опубликовано в Молодой учёный №8 (112) апрель-2 2016 г.

Дата публикации: 27.04.2016

Статья просмотрена: 6 раз

Библиографическое описание:

Худаяров С. С. Существенный спектр дополнения Шура одной операторной матрицы // Молодой ученый. — 2016. — №8. — С. 28-30. — URL https://moluch.ru/archive/112/28667/ (дата обращения: 17.12.2018).



Пусть и -три гильбертовы пространства и . Тогда известно, что всякий линейный ограниченный оператор , действующий в всегда представляется как блочно-операторная матрица

(1)

с линейными ограниченными операторами . При этом оператор является самосопряженным тогда и только тогда, когда

(сопряженный оператор к ).

Пространство представим в виде ортогональной суммы гильбертовых пространств и . Положим

Очевидно, что Тогда оператор действующий в относительно представление записывается как блочно-операторная матрица [1] следующего вида:

(2)

Пусть - множество комплексных чисел и - пространство линейных ограниченных операторов в гильбертовом пространстве . Следующие операторы

называются дополнениями Шура соответствующий блочно-операторной матрицы , определенный по формуле (2) и они играют важную роль в спектральном анализе этой матрицы [1–3]. Видно, что дополнение Шура являются операторно-значные регулярные функции определенные вне спектров операторов и , соответственно.

Пусть -мерный куб с соответствующим отождествлением противоположных граней, - гильбертово пространство квадратично-интегрируемых (комплекснозначных) функций, определенных на . Рассмотрим случай, когда и . Пространства и называются нольчастичным, одночастичным и двухчастичным подпространством стандартного фоковского пространства по .

Всюду в работе будем рассматривать блочно-операторную матрицу , определенную по формуле (1), со следующими матричными элементами

Здесь -фиксированное вещественное число; и - вещественно-непрерывные функции на и , соответственно. При этом

.

Можно легко проверить, что при этих предположениях блочно-операторная матрица является ограниченным и самосопряженным оператором в .

Простые вычисления показывают, что первое дополнение Шура блочно-операторной матрицы (действующее по формуле (2)) соответствующее разложению определяется следующим образом

где

При каждом фиксированном определим регулярную в функцию

где числа и определяются следующим образом:

Тогда есть оператор умножения на функцию Следует отметить, что при каждом фиксированном оператор типа (3) является оператором, носящим название обобщенной модели Фридрихса.

Пусть

Следующая теорема описывает существенный спектр оператора .

Теорема. При каждом фиксированном для существенного спектра оператора имеет место равенство

.

Доказательство. Очевидно, что операторы , и , являются самосопряженными операторам ранга 1. Из известной теоремы Вейля [4] о сохранении существенного спектра при возмущениях конечного ранга следует, что существенный спектра оператора совпадает с существенным спектром оператора . Из непрерывности функции при на компактном множестве следует следующая теорема . Отсюда вытекает, что . Теорема доказана.

Литература:

  1. C. Tretter. Spectral Theory of Block Operator Matrices and Applications. Imperial College Press, 2008.
  2. I. Schur. Uber potenzreihen, die im innern des einheitskreises beschrankt sint. J. Reine Angew. Math., 147 (1917), 205–232.
  3. F. Zhang. The Schur complement and its applications. Vol. 4 of Numerical Methods and Algorithms. Springer, New York, 2005.
  4. М. Рид, Б. Саймон. Методы современной математической физики. Т. 4. Анализ операторов. –М.: Мир. 1982, –430 С.
Основные термины (генерируются автоматически): блочно-операторная матрица, существенный спектр оператора, функция, пространство, оператор.


Похожие статьи

О спектре дополнения Шура одной операторной матрицы

Блочно-операторная матрица — это матрица элементы которой являются линейными операторами в банаховым или гильбертовом пространстве [1]. Пусть и -три гильбертовы пространства и . Тогда известно, что всякий линейный ограниченный оператор...

Условия существования собственных значений одной...

Блочно-операторная матрица — это матрица, элементы которой являются линейными операторами в банаховом или гильбертовом пространствах [1]. Одним из специальных классов блочно-операторных матриц являются Гамильтонианы системы с несохраняющимся числом...

Описание существенного спектра матричной модели...

Блочно-операторная матрица — это матрица, элементы которой являются линейными операторами в банаховом или гильбертовом пространствах [1]. Одним из специальных классов блочно-операторных матриц являются Гамильтонианы системы с несохраняющимся числом...

Описание множества собственных значений одной блочной...

оператор, гильбертово пространство, оператор уничтожения, существенный спектр, оператор рождения, блочно-операторная матрица, ограниченный самосопряженный оператор, обобщенная модель...

Об основном состоянии одной блочно-операторной матрицы

оператор, собственное значение, собственное значение оператора, оператор уничтожения, существенный спектр, гильбертово пространство, блочно-операторная матрица, вещественное число...

Построение резольвенты обобщенной модели Фридрихса

Надо отметить, что по определению пространства всякий линейный ограниченный оператор в этом пространстве всегда записывается как блочно операторная матрица.

Построение второго дополнения Шура одной...

Блочно-операторная матрица — это матрица элементы которой являются линейными операторами в банаховым или гильбертовом пространстве. Пусть –две гильбертовы пространства и . Тогда известно, что всякий линейный ограниченный оператор...

О достаточном условии конечности числа собственных значений...

. Рассмотрим гамильтониан , действующий в гильбертовом пространстве как блочно-операторная матрица.

При этом состоит из замыкания области значений функции , т. е. . Отметим, что существенный спектр оператора может содержит множеству с...

О дискретном спектре обобщенной модели Фридрихса...

Найден явный вид существенного и дискретного спектра оператора .

Надо отметить, что всякий линейный ограниченный оператор в всегда записывается как блочно операторная матрица.

Обсуждение

Социальные комментарии Cackle

Похожие статьи

О спектре дополнения Шура одной операторной матрицы

Блочно-операторная матрица — это матрица элементы которой являются линейными операторами в банаховым или гильбертовом пространстве [1]. Пусть и -три гильбертовы пространства и . Тогда известно, что всякий линейный ограниченный оператор...

Условия существования собственных значений одной...

Блочно-операторная матрица — это матрица, элементы которой являются линейными операторами в банаховом или гильбертовом пространствах [1]. Одним из специальных классов блочно-операторных матриц являются Гамильтонианы системы с несохраняющимся числом...

Описание существенного спектра матричной модели...

Блочно-операторная матрица — это матрица, элементы которой являются линейными операторами в банаховом или гильбертовом пространствах [1]. Одним из специальных классов блочно-операторных матриц являются Гамильтонианы системы с несохраняющимся числом...

Описание множества собственных значений одной блочной...

оператор, гильбертово пространство, оператор уничтожения, существенный спектр, оператор рождения, блочно-операторная матрица, ограниченный самосопряженный оператор, обобщенная модель...

Об основном состоянии одной блочно-операторной матрицы

оператор, собственное значение, собственное значение оператора, оператор уничтожения, существенный спектр, гильбертово пространство, блочно-операторная матрица, вещественное число...

Построение резольвенты обобщенной модели Фридрихса

Надо отметить, что по определению пространства всякий линейный ограниченный оператор в этом пространстве всегда записывается как блочно операторная матрица.

Построение второго дополнения Шура одной...

Блочно-операторная матрица — это матрица элементы которой являются линейными операторами в банаховым или гильбертовом пространстве. Пусть –две гильбертовы пространства и . Тогда известно, что всякий линейный ограниченный оператор...

О достаточном условии конечности числа собственных значений...

. Рассмотрим гамильтониан , действующий в гильбертовом пространстве как блочно-операторная матрица.

При этом состоит из замыкания области значений функции , т. е. . Отметим, что существенный спектр оператора может содержит множеству с...

О дискретном спектре обобщенной модели Фридрихса...

Найден явный вид существенного и дискретного спектра оператора .

Надо отметить, что всякий линейный ограниченный оператор в всегда записывается как блочно операторная матрица.

Задать вопрос