Продукционные правила базы знаний экспертной системы для контроля динамического состояния шлифовальных станков | Статья в журнале «Молодой ученый»

Авторы: ,

Рубрика: Спецвыпуск

Опубликовано в Молодой учёный №21 (101) ноябрь-1 2015 г.

Дата публикации: 16.12.2015

Статья просмотрена: 58 раз

Библиографическое описание:

Игнатьев А. А., Каракозова А. В. Продукционные правила базы знаний экспертной системы для контроля динамического состояния шлифовальных станков // Молодой ученый. — 2015. — №21.2. — С. 24-25. — URL https://moluch.ru/archive/101/23642/ (дата обращения: 21.07.2018).



 

Одним из направлений применения интеллектуальных технологий является разработка экспертных систем (ЭС) поддержки принятия решения при мониторинге технологического процесса и оборудования [1, 2]. В нашем случае рассматривается вопрос построения ЭС для поддержки принятия решения при контроле динамического состояния шлифовальных станков для обработки колец подшипников [3]. Структура разрабатываемой экспертной системы контроля динамического состояния станка включает следующие компоненты: базу знаний (БЗ), компонент приобретения знаний, объяснительный компонент, диалоговый компонент, механизм вывода, базу данных (рабочую память). На этапе формализации базы знаний необходимо выбрать модель представления знаний. На основании этого осуществляется проектирование логической структуры БЗ. База знаний любой экспертной системы состоит из двух компонент: декларативной и процедурной. Декларативная компонента содержит знания о предметной области: информацию о сущностях, свойствах сущностей и связей между ними. Процедурная компонента содержит правила, применяемые для преобразования декларативной информации.

В промышленных ЭС база знаний чаще всего основывается на продукционной модели или модели, основанной на правилах. Данная модель представляет знания в виде: если «условие», то «действие». В качестве «условия» выступает предложение, по которому осуществляется поиск в БЗ, а «действие» выполняется при успешном исходе поиска.

Декларативная компонента разрабатываемой ЭС реализована в СУБД Access в виде объектно-ориентированной модели. Процедурная компонента реализована в СИ++ Bulder. Принцип работы процедурной компоненты заключается в следующем: «Если атрибут Аi объекта Оi имеет значение Зi, то необходимо выполнить действие Di». Под действием понимается цель поиска (дефект оборудования).

Для того чтобы достаточно эффективно использовать информацию в задаче контроля динамического состояния станков, необходимо состыковать её с БЗ и представить её в форме, удобной для использования в программе компьютера. Создание БЗ представляет собой систематический процесс, включающий сбор и обработку первичных данных, установление фактов и связей и формирование правил.

Рассмотрим фрагмент формирования продукционных правил при анализе работоспособности круглошлифовального станка SWaAGL-50:

Правило 1: Если «Измеряемый параметр – Вибрация на ШУ круга – недопустимое», то «Заключение= Необходима балансировка круга».

Правило 2: Если «Измеряемый параметр – Вибрация на ШУ круга – допустимое» и «Вибрация на передней опоре ШУ детали – недопустимое», то «Заключение = Необходима балансировка шпинделя детали или замена подшипника».

Правило 3: Если «Измеряемый параметр – Вибрация на ШУ круга – допустимое» и «Вибрация на передней опоре ШУ детали – допустимое» и «Измеряемый параметр – Вибрация на задней опоре ШУ детали – недопустимое» и «Измеряемый параметр – ОУВ двигателя - недопустимое», то «Заключение=Необходима замена двигателя».

В БЗ входят порядка 100 продукционных правил.

Продукционная система в данной ЭС является системой с прямым выводом, т.к. реализует стратегию «от фактов к заключениям». Достоинством такой системы можно считать простое представление знаний и организации логического вывода. К недостаткам можно отнести сложность оценки целостного образа знаний.

Применение ЭС в производственных условиях позволяет обслуживающему персоналу оперативно выявить неисправность шлифовальных станков, что существенно снижает время восстановления и повышает коэффициент готовности станков.

 

Литература:

  1.                Искусственный интеллект: применение в интегрированных производственных системах / под ред. Э. Кьюсиака. М.: Машиностроение, 1991. 544 с.
  2.                Каракозова А.В., Игнатьев А.А., Каракозова В.А. Использование интеллектуальных технологий при мониторинге динамического состояния шлифовальных станков // Современные тенденции в технологиях металлообработки и конструкциях металлообрабатывающих машин и комплектующих изделий: межвуз. научн. сб. Уфа, 2014. С. 131-135.
  3.                Свидетельство о государственной регистрации программы для ЭВМ № 2014662238 / А.В. Каракозова, А.А. Игнатьев
Основные термины (генерируются автоматически): Измеряемый параметр, процедурная компонента, ШУ круга, Вибрация, декларативная компонента, передняя опора ШУ детали, поддержка принятия решения, правило.


Похожие статьи

Использование оболочек для программной реализации экспертной...

Разрабатываемая ЭС предназначена для поддержки принятия решений при определении причин

Процедурная компонента представлена продукционными правилами вида

Сущность в БЗ объединено с понятием атрибут в БД (декларативная компонента).

Некоторые проблемы систем поддержки принятия решений

Такие системы принято называть системами поддержки принятия решений (СППР) [5].

И круг практического применения СППР стремительно расширяется. В редакционной статье журнала Decision Support Systems [4], в качестве областей применения СППР были выделены...

Интеллектуальные системы поддержки принятия решений

Как правило, системы поддержки принятия решений являются результатом мультидисциплинарного исследования

управления, в состав основных компонентов которых включаются базы данных и знаний, блок решения и логического вывода, хранилище моделей и...

Основные принципы проектирования сложных технических систем...

Научное описание никогда не охватывает всех деталей, оно всегда выделяет существенные элементы

Исходная концептуальная схема, модель постановки проблем и их решения определяется исходя из

Однако, как правило, частные критерии являются противоречивыми.

Системы коллективной поддержки принятия решений...

Под Системой Поддержки Принятия Решений (СППР) здесь будем понимать компьютерную автоматизированную систему, целью которой является помощь лицам, принимающим решение (ЛПР) в сложных условиях, для полного и объективного анализа предметной деятельности.

Информационная система поддержки принятия решений...

Как правило, применительно к рынку труда конкретного города или специальностям

Рис. 1. Структурная схема компонентов информационной системы. Пользователям системы предоставляется возможность получить поддержку в процессе принятия решений по выбору...

Рекрутинг как элемент системы подбора персонала

‒ General recruitment — поиск в бизнес-кругах, через личные деловые связи, работа с собственной базой данных топ-менеджеров

Сбор и подготовка соответствующих документов для принятия кандидата на должность.

Как издать спецвыпуск? Правила оформления статей.

Методика измерения параметров на координатно-измерительной...

Для КИМ решение таких задач не представляет труда.

Координатно-измерительные машины позволяют контролировать все параметры детали, указанные на чертеже, за исключением резьбы; параметров шероховатости поверхности; маленьких фасок размером меньше 2 мм.

Обсуждение

Социальные комментарии Cackle

Похожие статьи

Использование оболочек для программной реализации экспертной...

Разрабатываемая ЭС предназначена для поддержки принятия решений при определении причин

Процедурная компонента представлена продукционными правилами вида

Сущность в БЗ объединено с понятием атрибут в БД (декларативная компонента).

Некоторые проблемы систем поддержки принятия решений

Такие системы принято называть системами поддержки принятия решений (СППР) [5].

И круг практического применения СППР стремительно расширяется. В редакционной статье журнала Decision Support Systems [4], в качестве областей применения СППР были выделены...

Интеллектуальные системы поддержки принятия решений

Как правило, системы поддержки принятия решений являются результатом мультидисциплинарного исследования

управления, в состав основных компонентов которых включаются базы данных и знаний, блок решения и логического вывода, хранилище моделей и...

Основные принципы проектирования сложных технических систем...

Научное описание никогда не охватывает всех деталей, оно всегда выделяет существенные элементы

Исходная концептуальная схема, модель постановки проблем и их решения определяется исходя из

Однако, как правило, частные критерии являются противоречивыми.

Системы коллективной поддержки принятия решений...

Под Системой Поддержки Принятия Решений (СППР) здесь будем понимать компьютерную автоматизированную систему, целью которой является помощь лицам, принимающим решение (ЛПР) в сложных условиях, для полного и объективного анализа предметной деятельности.

Информационная система поддержки принятия решений...

Как правило, применительно к рынку труда конкретного города или специальностям

Рис. 1. Структурная схема компонентов информационной системы. Пользователям системы предоставляется возможность получить поддержку в процессе принятия решений по выбору...

Рекрутинг как элемент системы подбора персонала

‒ General recruitment — поиск в бизнес-кругах, через личные деловые связи, работа с собственной базой данных топ-менеджеров

Сбор и подготовка соответствующих документов для принятия кандидата на должность.

Как издать спецвыпуск? Правила оформления статей.

Методика измерения параметров на координатно-измерительной...

Для КИМ решение таких задач не представляет труда.

Координатно-измерительные машины позволяют контролировать все параметры детали, указанные на чертеже, за исключением резьбы; параметров шероховатости поверхности; маленьких фасок размером меньше 2 мм.

Задать вопрос