Автор: Дупленко Александр Геннадьевич

Рубрика: Информатика и кибернетика

Опубликовано в Техника. Технологии. Инженерия №1 (1) июнь 2016 г.

Дата публикации: 28.05.2016

Библиографическое описание:

Дупленко А. Г. Направления развития гомоморфного шифрования в Российской Федерации // Техника. Технологии. Инженерия. — 2016. — №1. — С. 9-11.



В статье представлены результаты исследования направлений развития гомоморфного шифрования в Российской Федерации в настоящее время. Выявлены четыре актуальных направления: разработка симметричного полностью гомоморфного шифрования, где за основу взяты неприводимые матричные полиномы; разработка симметричных полностью гомоморфных линейных криптосистем на основе задачи факторизации чисел; разработка пороговых систем гомоморфного шифрования и защита информации в облачных вычислениях, а также исследование методов обеспечения конфиденциальности вычислений в облачной среде на основе китайской теоремы об остатках.

Ключевые слова: гомоморфное шифрование, полностью гомоморфная криптосистема; пороговая система гомоморфного шифрования.

Цель проведенного исследования состояла в выявлении актуальных направлений развития гомоморфного шифрования российскими учеными.

Под гомоморфным шифрованием понимается криптографический примитив, который представляет собой функцию шифрования, удовлетворяющую дополнительному требованию гомоморфности относительно каких-либо алгебраических операций над открытыми текстами [1, с. 27].

В основе понятия «гомоморфное шифрование» находится понятие «privacy homomorphism», введенное Ривестом (Rivest) в статье «On data banks and privacy homomorphism» [2].

Математически «privacy homomorphism» можно описать следующим образом:

Пусть даны две алгебраические системы:

C =

где S и — множества; , — функции; , — предикаты, определённые на множествах S и соответственно, а {S, {} — известные константы.

Пусть существует обратимая функция : S. Тогда называется privacy homomorphism, если выполняются следующие условия:

а также:

a) функции и легко вычислимы;

b) операции и предикаты так же эффективно вычислимы;

c) представление «зашифрованного» значения (, где S, занимает не слишком много места по сравнению с ;

d) знания ( для большого количества недостаточно для восстановления φ (атака с известным шифротекстом)

e) знание некоторых пар (,() недостаточно для восстановления (атака с подобранным открытым текстом)

f) знания алгоритмов вычисления операций и предикатов недостаточно для построения алгоритма вычисления .

Создание наиболее эффективной и полностью гомоморфной криптографической системы смогло бы обеспечить практическую реализацию в аутсорсинге закрытых вычислений, примером могут быть облачные вычисления. Использование гомоморфного шифрования смогло бы объединить вместе различные услуги, при этом не предоставляя данные для каждой конкретной услуге. Например, объединение услуг каких-либо различных компаний позволило бы последовательно рассчитать налог, учитывая последние изменения, применить к нему обменный курс и отправить необходимые документы для совершения сделки, при этом имея возможность не предоставлять фактические данные для каждой из задействованных услуг.

Гомоморфное свойство, используемое в различных криптографических системах, может быть применимо для создания наиболее безопасных систем голосования, всевозможных хеш-функций, которые будут стойки к коллизиям, закрытой информации поисковых систем, и сможет обеспечить гарантированную конфиденциальность обработанных данных в широком использовании публичных облачных вычислений.

В то же время гомоморфное шифрование обладает и рядом недостатков.

Во-первых, для модификации утерянных или удаленных данных необходимо будет передать секретный ключ по сети, иначе говоря, потребуется его раскрытие, что, конечно же, подставит под угрозу безопасность. Во-вторых, коренной недостаток, присущий гомоморфным криптосистемам, состоит в том, что в атаках на них может использоваться их дополнительная структура. К примеру, при использовании исходного варианта RSA для цифровой подписи произведение двух подписей будет давать корректную подпись для произведения двух соответствующих сообщений. Хотя есть много способов избежать такой атаки, к примеру, применяя хэш-функции, или используя избыточность вероятностных криптосистем, есть также более сложные атаки, где показывается нестойкость криптосхем. Для криптосхем с открытым ключом желание повысить криптостойкость приводит к снижению эффективности. Данный недостаток можно преодолеть снижением требований к криптосхеме, а именно позволив ей быть симметричной, но компактной и криптостойкой к атаке на основе известных открытых текстов.

В-третьих, одной из существенных проблем известных полностью гомоморфных криптосистем является их крайне низкая производительность. В настоящее время существует два основных пути её повышения: использование «ограниченного гомоморфизма» (и так называемый «метод упаковки шифротекстов». Первый подразумевает криптосистему, которая может выполнять операции двух видов (сложения и умножение), но в ограниченном количестве. Суть второго в том, что в один шифротекст записывается сразу несколько открытых текстов, и при этом в процессе одиночной операции такого пакетного шифротекста происходит одновременная обработка всех входящих в него шифротекстов.

В-четвертых, если рассматривать свойство гомоморфности функции шифрования с точки зрения криптографических приложений, то оно уже не всегда может расцениваться как достоинство криптосистемы. Существуют примеры, когда данное свойство уже относится к слабостям. Например, преобразование, обратное функции шифрования криптосистемы RSA, задействовано в схеме электронной подписи RSA для генерации подписей. Пусть дано сообщение m, тогда подпись будет вычисляться по формуле s=m*dmodN, где d — секретная экспонента. Легко понять, что и это обратное преобразование будет гомоморфно относительно операции произведения сообщений. В конечном итоге, будет иметься следующий способ фальсификации подписей [1. С. 30].

В настоящее время ведутся активные исследования в области гомоморфного шифрования. В качестве основных направлений его развития можно назвать следующие.

Во-первых, разработка симметричного полностью гомоморфного шифрования с использованием неприводимых матричных полиномов. В Российской Федерации в данной области работает Ф. Б. Буртыка, который предложил проводить шифрование в два раунда: в начале берутся открытые тексты, которые являются элементами кольца вычетов, после чего кодируются в матрицы с использованием секретного вектора, а затем эти матрицы отображаются в матричные полиномы с использованием секретного неприводимого матричного полинома. Дешифрование также происходит в два раунда [3; 4].

Во-вторых, разработка симметричных полностью гомоморфных линейных криптосистем на основе задачи факторизации чисел. В числе российских ученых, работающих в данном направлении, можно назвать А. В. Трепачеву [5], П. К. Бабенко [6].Криптостойкость данных систем обосновывается использованием сложности решения задачи факторизации больших чисел.

В-третьих, разработка пороговых систем гомоморфного шифрования и защита информации в облачных вычислениях. Исследования в данном направлении ведут Варновский Н. П., Мартишин С. А., Храпченко М. В., Шокуров А. В. Ими предложен протокол облачных вычислений над конфиденциальными данными в модели с вспомогательными криптосерверами. В результате получена система, не требующая дополнительного открытого ключа и заменяющая наиболее неэффективную и проблемную процедуру перешифрования (bootstrapping) более эффективным протоколом перешифрования, выполняемым криптосерверами [7].

Четвертое направление развития гомоморфного шифрования в Российской Федерации — исследование методов обеспечения конфиденциальности вычислений в облачной среде на основе китайской теоремы об остатках. В данном направлении работают Червяков Н. И., Кучеров Н. Н., которые исследуют применимость пороговых схем разделения секрета для обеспечения безопасности облачных вычислений, а также неприменимость схемы разделения секрета Шамира. В сфере их научных интересов находятся также пороговые схемы разделения секрета Миньотта, Асмута-Блума и схемы HORNS и их модификаций, которые базируются на китайской теореме об остатках.

Таким образом, можно выделить следующие четыре направления развития гомоморфного шифрования в настоящее время в России: разработка симметричного полностью гомоморфного шифрования с использованием неприводимых матричных полиномов; разработка симметричных полностью гомоморфных линейных криптосистем на основе задачи факторизации чисел; разработка пороговых систем гомоморфного шифрования и защита информации в облачных вычислениях, а также исследование методов обеспечения конфиденциальности вычислений в облачной среде на основе китайской теоремы об остатках.

Литература:

  1. Варновский Н. П., Шокуров А. В. Гомоморфное шифрование // Труды Института системного программирования РАН. 2007. № 12. С. 27–36.
  2. Rivest, R. L. On data banks and privacy homomorphism / R. L. Rivest, L. Adleman, M. L. Dertouzos // Foundations of secure computation. -1978. –Vol. 32, no. 4. –Pp. 169–178.
  3. Буртыка Ф. Б. Симметричное полностью гомоморфное шифрование с использованием неприводимых матричных полиномов // Известия ЮФУ. Технические науки. 2014. № 8. С. 107–122.
  4. Буртыка Ф. Б. Пакетное симметричное полностью гомоморфное шифрование на основе матричных полиномов // Труды Института системного программирования РАН. 2014. Т. 26. № -5. С. 99–116.
  5. Трепачева А. В. Криптоанализ симметричных полностью гомоморфных линейных криптосистем на основе задачи факторизации чисел // Известия ЮФУ. Технические науки. 2015. № 5 (166). С. 89–102.
  6. Трепачева А. В., Бабенко Л. К. Формальный криптоанализ полностью гомоморфных систем, использующих задачу факторизации чисел // Информационное противодействие угрозам терроризма. 2015. № 24. С. 283–286.
  7. Варновский Н. П., Мартишин С. А., Храпченко М. В., Шокуров А. В. Пороговые системы гомоморфного шифрования и защита информации в облачных вычислениях // Программирование. 2015. № 4. С. 47–51.
  8. Червяков Н. И., Кучеров Н. Н. Исследование методов обеспечения конфиденциальности вычислений в облачной среде на основе китайской теоремы об остатках // Сборник научных трудов ВНИИ ОиК. 2015. Т. 1. № 8. С. 633–635.
Основные термины (генерируются автоматически): гомоморфного шифрования, развития гомоморфного шифрования, гомоморфных линейных криптосистем, задачи факторизации чисел, основе задачи факторизации, основе китайской теоремы, обеспечения конфиденциальности вычислений, систем гомоморфного шифрования, методов обеспечения конфиденциальности, облачных вычислениях, пороговых систем гомоморфного, разработка пороговых систем, гомоморфное шифрование, неприводимых матричных полиномов, использованием неприводимых матричных, облачной среде, исследование методов обеспечения, разработка симметричных, защита информации, разработка симметричного.

Обсуждение

Социальные комментарии Cackle

Посетите сайты наших проектов