Библиографическое описание:

Швабенланд И. С. Структура и запасы лабильного органического вещества на отвалах вскрышных пород Изыхского каменноугольного месторождения республики Хакасия [Текст] // Технические науки в России и за рубежом: материалы II междунар. науч. конф. (г. Москва, ноябрь 2012 г.). — М.: Буки-Веди, 2012. — С. 158-161.

Органическая часть почвы чрезвычайно гетерогенна, что обусловливает разную устойчивость его компонентов к разложению. По этому признаку органическое вещество разделяется на 2 фракции: легкоминерализуемое (ЛМОВ) и устойчивое. Легкоминерализуемое органическое вещество представляет собой сумму лабильных (растительные и животные остатки и микробобиомасса) и подвижных форм, преходящих в жидкую фазу почвы (водо- и щелочно-растворимые соединения). Структура и запасы компонентов лабильного органического вещества слабо изучена на техноземах Европейской части России, Средней Сибири и совсем не изучена на техноземах Хакасии. Это определило постановку наших исследований.

Цель исследования заключается в изучении структуры и запасов лабильного органического вещества на отвалах вскрышных пород Изыхского каменноугольного месторождения республики Хакасия.

Техногенные комплексы занимают значительное место в общей цепи природных экосистем Сибири. Разработка угольных месторождений влечет за собой разрушение почвенного и растительного покрова, нарушение естественного рельефа, изменение гидрологического режима, изменение сложившихся природных циклов углерода и азота, изменение микроклимата и вынос на дневную поверхность значительных объемов вскрышных пород [1,4]. При этом территория, испытывающая на себе отрицательное воздействие горного производства, примерно в 10 раз превышает площадь самих нарушенных участков [3].

В.В. Чупрова и Л.С. Шугалей [9] считают, что формирование растительного и почвенного покрова на техногенных территориях происходит под влиянием окружающих высокопродуктивных естественных ландшафтов и агроценозов. Установлено, что смежные с техногенными территориями сохранившиеся естественные ландшафты и культурные биогеоценозы, обладая способностью к саморегуляции и повышению устойчивости, активно стремятся к заполнению биологической ниши. На технически рекультивированные земли поступают потоки вещества и энергии в виде семян и спор высших и низших растений, микроорганизмы, характерные для зоны.

Формирование лабильного органического вещества идет за счет произрастающих растений: корней и опавших надземных органов. Совокупность этих остатков составляет подземное растительное вещество и по нашим представлениям является лабильной формой легкогидролизуемой части органического вещества. Корни как компонент подземного растительного вещества представляют собой органы, специализированные для закрепления растений на почве, накопления и проведения веществ. Функции корней многообразны: регулируют метаболическую активность микробного сообщества, преобразуют свойства ризосферной почвы, участвуют в азотфиксации, закрепляют почвенные частицы в стабильные макроагрегаты и придают им свойства водоустойчивости [8]. Другим компонентом подземного растительного вещества является мортмасса, запасы которой складываются из отмирающих корней и надземных органов растений. Отмирание тех и других органов происходит как в летний период, так и осенью. Данные о запасах надземной и подземной фитомассы дают представление о количестве растительной массы, участвующей в процессах почвообразования и в общем биологическом круговороте веществ, а также раскрывают пути приспособления растений к факторам внешней среды [2].

Наши исследования показали, что запасы растительного вещества в исследованных почвах изменяются в широких пределах (табл. 1).

Таблица 1

Запасы растительного вещества, т/га (2005-2012 гг.)

Компоненты растительного вещества, т/га

Техноземы

Каштановая почва (агроценоз пшеницы)

Самозарастающего отвала

Бестранспортного отвала (пастбище)

Надземное:

Зеленая масса (G):

-зерно

-солома

Ветошь (D)

Подстилка (L)

Всего




1,09

3,07

4,11

-

-

1,23

-

-

2,34

0,98

1,49

0,34

0,97

1,47

-

3,07

6,03

8,02

Подземное

(0-20 см):

Корни (R+V)

мм>2 (St)

мм<2 (Rem)

Всего




8,57

12,14

1,87

3,04

5,05

2,55

6,77

18,38

10,93

28,12

0,34

4,76

Общий запас

21,45

34,15

12,78


Общий запас растительного вещества в техноземах, используемых под пастбища, преобладает по сравнению с таковым на самозарастающих отвалах, что коррелирует с содержанием гумуса в них. Общий запас растительного органического вещества на описываемых площадях, по данным наших исследований, составляет 12,78 т/га на каштановой почве, занятой агроценозом пшеницы; 21,45 т/га – на Самозарастающем отвале; 34,15 т/га – на Бестранспортном отвале. Соотношение между надземными и подземными компонентами растительного вещества составляет: 0,2 - на Самозарастающем отвале; 0,2 – на Бестранспортном отвале и 1,7 на каштановой почве. Соотношение на пастбищах между подземным и надземным растительным веществом говорит о преобладании подземного, в отличие от агроценоза на каштановой почве, в котором доминирует надземное растительное вещество. Заметим, что в структуре надземного растительного вещества всех изученных почв преобладает зеленая фитомасса. Наибольший запас надземной фитомассы отмечен в агроценозе пшеницы на каштановой почве и обусловлен высокими запасами зерна и соломы. Минимальный запас надземной фитомассы характерен для Самозарастающего отвала, что связано с произрастающей на нем растительности.

На снижение продукции повлияло также неустойчивое увлажнение и частые засухи в первую половину вегетационного сезона, что вызвало активную реутилизацию пластических веществ, замедлявшую рост и развитие растений, но стимулировавшую образование ветоши. К тому же, главным параметром, определяющим наибольшую интенсивность прироста надземной массы, является и количество фотосинтезирующих органов. Чем больше зеленой фитомассы, тем больше органического вещества продуцируется фитоценозом в единицу времени [7].

Рассматриваемые нами отвалы имеют различия в видовой насыщенности растениями и в величинах фитомассы. Основу травостоя практически на всех изученных техноземах отвалов вскрышных пород Изыхского каменноугольного бассейна составляют злаки. Фитомасса выше на техноземах, чем на зональных ненарушенных почвах. В структуре надземной фитомассы травяных фитоценозов в отличие от агроценозов выделяется подстилка, которая лежит на почве и ее нижний слой непосредственно соприкасается с минеральной частью почвы. Поэтому подстилку рассматривают [10] как компонент, соединяющий надземный и подземный ярусы в процессах биологического круговорота. Запас и мощность подстилки увеличивается, когда накопившаяся ветошь ляжет на почву. Роль травяной подстилки проявляется в питании растений, гумусообразовании, сохранении влаги и защите почв от эрозии. Она, с одной стороны, способствует поддержанию свойств и признаков насыпного гумусово-аккумулятивного горизонта, а с другой – изменению его вещественного состава, что, возможно, может привести к ослаблению профилепреобразующих и усилению профиледифференцирующих процессов [5]. Результаты исследования (табл. 2) показывают, что масса подстилок на пастбищных техноземах возрастает в 2 раза по сравнению с фоновыми почвами, так как пастбищная нагрузка на сравниваемых объектах неодинаковая. Таблица 2 Статистические характеристики запасов подземного растительного вещества (т/га)
в слое 0-20 см, в техноземах и зональных почвах (2005-2012 гг.)

П. п.

Название почвы

Органы растений

n*

max- мin

X

Sx

Sx, %

S

V,%

Самозарастающий отвал

Технозем

корни

10

2,14-1,60

1,84

0,05

2,82

0,16

0,03

9

мм>2

10

1,95-1,46

1,67

0,05

3,20

0,17

0,03

10

мм<2

10

2,79-2,14

2,44

0,07

2,98

0,23

0,05

9

Агроценоз пшеницы, пашня

Каштано­вая почва

корни

10

6,33-1,08

2,96

0,61

20,44

1,91

3,66

65

мм>2

10

6,37-3,28

4,42

0,33

7,45

1,04

1,08

24

мм<2

10

10,70-3,85

5,76

0,63

10,99

2,00

3,99

35

Бестранспортный отвал, пастбище

Технозем

корни

10

14,37-10,34

12,14

0,37

3,08

1,18

1,39

10

мм>2

10

6,92-2,79

5,05

0,42

8,24

1,32

1,73

26

мм<2

10

12,48-7,63

10,93

0,45

4,12

1,42

2,02

13


Рис. 1. Распределение подземного растительного вещества в профиле почв, т/га


Доля зеленой массы растений на техноземах и зональных почвах, также неодинакова. При анализе распределения подземного растительного вещества в пределах 30-40 см толщи, по данным 2011 года, было выявлено, что в агроценозе пшеницы запасы подземной фитомассы заметно уступают таковым на пастбищах (рис. 1). В составе подземного растительного вещества преобладает мортмасса, в частности, мелкая мортмасса, что указывает на заторможенность процессов ее разложения. Такая особенность, согласно исследованиям А.А. Титляновой и Н.П. Миронычевой-Токаревой [6], является характерной чертой восстанавливающихся экосистем, в которых часть образующегося вещества и энергии накапливается в мертвом веществе. Эта закономерность четко просматривается на Самозарастающем и Бестранспортном отвале на каждой глубине. Отличительной особенностью подземного растительного вещества на пастбищах является наибольшая концентрация запасов подземной фитомассы в слое 0-10 см и резкое уменьшение их вниз по профилю.

Таким образом, уровень биологической продуктивности изученных почв зависит от видовых особенностей растений, слагающих конкретные сообщества, и почвенно-экологических условий их местообитания.


Литература:

  1. Андроханов, В.А. Почвенно-экологическое состояние техногенных ландшафтов [Текст] / Андроханов, В.А., Куляпина, Е.Д., Курачев, В.М. // Почвы техногенных ландшафтов: генезис и эволюция. – Новосибирск: Изд-во СО РАН, 2004. – 151 с.

  2. Горшкова, А.А. Биодиагностика сохранения и восстановления степных пастбищных экосистем Сибири [Текст] / А.А. Горшкова, В.Г. Мордкович, С.К. Стебаева // Сибирский экологический журнал. – 1994. - № 5. – С. 403-416.

  3. Левит, С.Я. Породы вскрышных уральских железорудных месторождений и возможность использования их для рекультивации [Текст] / С.Я. Левит, Г.М. Пикалова // Освоение нарушенных земель. – М.: Наука, 1976. – С. 72 – 81.

  4. Моторина, Л.В. Опыт рекультивации нарушенных промышленностью ландшафтов в СССР и зарубежных странах. Обзорная информация [Текст] / Л.В. Моторина. - М.: ВНИИТЭИСХ, 1975. – 85 с.

  5. Савельева, И.Н. Запасы и интенсивности основных потоков углерода в агроэкосистемах на техноземах Назаровской котловины [Текст] / И.Н. Савельева // Диссер. на соискание ученой степени канд. биол. наук. – 2009. - С. 109-119.

  6. Титлянова, А.А. Круговорот углерода в травяных экосистемах при зарастании отвалов [Текст] / А.А. Титлянова, Н.П. Миронычева-Токарева, Н.Б. Наумова // Почвоведение. – 1988. – №7. – С. 164 – 174.

  7. Чупрова, В.В. Углерод и азот в агроэкосистемах Средней Сибири [Текст] / В.В. Чупрова. – Красноярск: Изд-во КГУ, 1997. – 166 с.

  8. Чупрова, В.В. Поступление и разложение растительных остатков в агроценозах Средней Сибири [Текст] / В.В. Чупрова // Почвоведение. – 2001. – № 2. – С. 204 – 214.

  9. Чупрова, В.В. Особенности макроморфогенеза почв на отвалах угольных разрезов Назаровской котловины [Текст] / В.В. Чупрова, Л.С. Шугалей // Вестник КрасГАУ. – Красноярск: Изд-во КрасГАУ. - 2007. - Вып. 1. – С. 61 – 70.

  10. Шибарева, С.В. Запасы и элементный состав подстилок в лесных и травяных экосистемах Сибири [Текст]: автореф. дис. … канд. биол. наук / С.В. Шибарева. – Новосибирск, 2004. – 22 с.

Врезка1

Обсуждение

Социальные комментарии Cackle