Библиографическое описание:

Водин Д. В. Ультразвуковая обработка как перспективный метод повышения износостойкости металлорежущего инструмента [Текст] // Технические науки в России и за рубежом: материалы V междунар. науч. конф. (г. Москва, январь 2016 г.). — М.: Буки-Веди, 2016. — С. 31-33.



 

Рассмотрена ультразвуковая обработка как один из основных методов повышения износостойкости металлорежущего инструмента, способствующая увеличению сроков его службы.

Ключевые слова: ультразвуковая обработка, ультразвук, ультразвуковая колебательная система.

 

В настоящее время в машиностроении применяется ультразвуковая обработка как один из перспективных методов повышения износостойкости металлорежущего инструмента. Основой ультразвуковой обработки является применение упругих волн с частотой колебаний от 20 кГц до 1 ГГц и они неуловимы на слух. В настоящее время ультразвуковая обработка может конкурировать с другими методами обработки и при этом оказывает влияние на повышение производительности и снижение износа металлорежущего инструмента1.

Ультразвуковая обработка применяется с помощью ультразвука с возможностью получения направленного излучения высокой интенсивности.

Ультразвуковая обработка, имеет ряд параметров, которые способствуют ухудшению состояния окружающей среды и воздуха активной зоны технологического оборудования2. Данные загрязнения влияют на технический уровень оборудования и качество технологического процесса. Все эти факторы влияют на эффективность продукции машиностроительных предприятий.

Основными преимуществами ультразвуковой обработки являются:

          применение высокопроизводительной обработки различных материалов;

          повышение износостойкости и прочности металлорежущего инструмента;

          высокие показатели упрочнения металлорежущего инструмента;

          высокая точность обработки;

          высокий уровень производительности.

К основным недостаткам ультразвуковой обработки относятся:

          сокращение производительности рабочих;

          малая глубина обработки;

          ухудшению состояния окружающей среды и воздуха активной зоны;

          негативное влияние на человеческий организм.

Ультразвуковая обработка основана на применении ультразвуковой колебательной установки, в состав которой входят:

          источник энергии;

          преобразователь;

          трансформатор (концентратор);

          опоры и корпус;

          рабочий инструмент, который создает ультразвуковое поле в обрабатываемом объекте или непосредственно воздействует на него.

Главный показатель ультразвуковой колебательной системы  это резонансная частота3. Применение технологических процессов с использованием колебательной установки основано на получении наибольших значений амплитуд ультразвуковых волн, возникающих на резонансных частотах. Номиналы резонансных частот колебательных систем должны быть в пределах разрешенных диапазонов (18, 22 и 44 кГц).

Совершенствование технологии ультразвуковой обработки и создание малогабаритных, высокоэффективных и многофункциональных станков и колебательных установок, относятся к основным требованиям современного машиностроительного производства. Разработки более совершенных ультразвуковых колебательных установок с использованием новых схем преобразователей, концентраторов, рабочих инструментов, материалов для их изготовления и высоким коэффициентом полезного действия направлены на увеличение эффективности ультразвуковой обработки4.

Для эффективной ультразвуковой обработки необходимо усовершенствование технологии и методики её применения. Генератором ультразвуковых колебаний и колебательную систему необходимо рассматривать как единое целое, так как они тесно связаны.

Наибольшая эффективность работы ультразвукового оборудования осуществляется при тесном взаимодействии всех узлов и компонентов5. Необходимо учитывать, что любое воздействие на колебательную систему способствует изменению о её характеристик, которые оказывают влияние на параметры генератора. На работу генератора колебаний влияет изменение параметров колебательной системы. Факторы, оказывающие влияние на работу генератора делятся на четыре группы:

          влияние на работу генератора со стороны внешней среды, за счет изменения параметров колебательной системы;

          влияние на работу генератора со стороны концентратора за счет изменения его параметров;

          влияние рабочих инструментов на параметры колебательной системы;

          влияние на параметры электрического генератора за счет изменения режимов работы и технических характеристик отдельных элементов электронной схемы генератора.

В колебательной системе существуют соединения, которые обеспечивают связь между элементами. Соединения могут быть как неразъемными, так и разъемными. Колебательную систему выполняют в виде отдельного узла. Этот узел должен соответствовать следующим требованиям:

          работать в заданном диапазоне частот и обладать необходимой мощностью, которая обеспечивает необходимую интенсивность излучения или амплитуду колебаний;

          быть прочным и износостойким;

          должен соответствовать требованиям техники безопасности.

Качество работы любой колебательной системы зависит от величины внутренних и механических потерь. Потери в ультразвуковой колебательной системе зависят от материала, из которого они сделаны, но это не является единственным фактором, определяющим потери.

Одними из главных являются особенности качества конструкции колебательной системы и отдельных ее элементов6. При интенсивном воздействии ультразвуковой установки у работников, работающих, рядом с ней наблюдаются отклонения в центральной нервной и периферической системе, а также сердечнососудистой и эндокринной системах.

Ультразвук нельзя услышать, но он, тем не менее, воздействует на барабанные перепонки, и может причинять острую боль. Ультразвук применяется в производственных процессах при металлообработке7.

Работники, которые длительное время обслуживают, ультразвуковое оборудование часто жалуются на головную боль, головокружение, общую слабость, сонливость, нарушение сна, раздражительность, ухудшение памяти, чувствительность к звукам, боязнь яркого света.

Для индивидуальной зашиты от действия ультразвука применяют наушники, резиновые перчатки, звукоизолирующие материалы, кожухи, экраны, звукопоглощающие устройства.

Ультразвуковая обработка является эффективным и перспективным методом повышения износостойкости металлорежущего инструмента.

На кафедре «Компьютерно-интегрированные системы в машиностроении» ФГБОУ ВПО «ТГТУ» активно развивается следующее направление научной деятельности: получение и обработка композиционных материалов, выбор и создание новых интеллектуальных САПР-ТП, а также адаптация систем автоматизированного проектирования технологических процессов механической обработки и сборки.

 

Литература:

 

  1.      Пестрецов, С. И. Применение систем автоматизированного проектирования процессов резания при создании управляющих программ для станков с числовым программным управлением / С. И. Пестрецов, А. М. Муравьев, М. В. Соколов // Вопросы современной науки и практики. Университет им. В. И. Вернадского. — 2014. — Вып. 1(50). — С. 146–152;
  2.      Алтунин, К. А. Концепция создания информационного обеспечения интеллектуальной системы автоматизированного проектирования процессов резания в технологии машиностроения: монография /К. А. Алтунин, М. В. Соколов — Тамбов: Студия печати Павла Золотова, 2015. — 112 с.
  3.      http:// m.slovari. yandex.ru/ article. Xml?book;
  4.      http://ohrana-bgd.narod.ru/jdtrans/jdtrans_070.html;
  5.      http://cyberleninka.ru/article/n/ultrazvukovoe-poverhnostnoe-plasticheskoe-deformirovanie;
  6.      http://www.dslib.net/avtomatizacia-upravlenia/avtomatizacija-upravlenija-jekologicheskimi-pokazateljami-tehnologicheskih-processov.html;
  7.       

Обсуждение

Социальные комментарии Cackle