Библиографическое описание:

Сорокина Е. И., Мелихов К. М., Маковкина Л. Н. Треугольный конечный элемент с узловыми неизвестными в виде перемещений и их производных (функции формы для перемещений) [Текст] // Технические науки в России и за рубежом: материалы IV междунар. науч. конф. (г. Москва, январь 2015 г.). — М.: Буки-Веди, 2015. — С. 134-137.

Приводятся расчет объемного конечного элемента треугольной формы поперечного сечения при различных вариантах аппроксимации перемещений.

Ключевые слова: оболочка, объемный треугольный конечный элемент, несжимаемый материал, напряжения, деформации, перемещения, двумерный полином, матрица.

 

Если в качестве неизвестных в узле дискретного треугольного элемента принять и частные производные перемещений, то вектор узловых неизвестных конечного элемента с узлами i, j, k в глобальной системе координат будет иметь вид

,                                                                                               (1)

где

;

.                                                                           (2)

Для аппроксимации полей перемещений внутренних точек треугольного конечного элемента через узловые неизвестные обычно используется двумерный полином в локальной системе координат х, у. Полный двумерный полином содержит десять членов и имеет вид

,            (3)

где коэффициенты ki являются неизвестными величинами, подлежащими определению.

Основная трудность при получении функций формы заключается в определении коэффициентов ki через компоненты вектора узловых неизвестных, так как число условий для определения коэффициентов ki всегда меньше их числа в полном двумерном полиноме(3). Поэтому приходится привлекать дополнительные условия.

Обоснованием корректности дополнительных условий являются результаты сопоставления на их основе приближенных решений с решениями других авторов или с точными решениями там, где это возможно.

В данной работе для определения коэффициентов аппроксимирующих полиномов дополнительным условием является добавление в столбец узловых неизвестных смешанной производной перемещения i-го треугольного конечного элемента . Столбец узловых неизвестных в локальной системе координат имеет вид

.                                      (4)

Перемещение внутренней точки конечного элемента выражается через узловые неизвестные величины соотношением

,                                               (5)

где под символом q понимается перемещение u или ν, а под символом qi(х, у)(i = 1…10) — аппроксимирующие функции формы.

Частные производные полного двумерного полинома (3) определяются выражениями

;

;

.                                                                                     (6)

Для получения интерполяционных полиномов qn(х, у)(n = 1…10), составляется матричная зависимость вида

,                                                                                                              (7)

где

 — столбец искомых коэффициентов, подлежащих определению для какой-либо одной функции qn(х, у);

 — матрица-строка узловых значений функции qn(х, у) или ее производных (элемент этой матрицы с номером n равен 1, остальные равны нулю). Например для функции q1(х, у) матрица-строка узловых значений имеет вид

,

для функции q4(х, у)

,

а для функции q10(х, у)

.

Элементы матрицы [T] представляют собой численные значения множителей при неизвестных коэффициентах ki полинома (1.3) и его производных (1.6) в узлах i, j, k конечного прямоугольного треугольника.

.

Решением системы уравнений для десяти столбцов  определяются коэффициенты km(m = 1…10) десяти аппроксимирующих функций q1(х, у), q2(х, у) … q10(х, у), входящих в (5).

Смешанную производную перемещения узла i локального треугольника с использованием способа конечных разностей можно выразить через первые производные узловых перемещений по формуле

.                                                                                       (8)

Если в локальной системе координат ввести вектор узловых неизвестных в виде

,                                                                   (9)

то на основании (8) между векторами  и  можно сформировать матричную зависимость

,                                                                                                           (10)

где матрица преобразования имеет вид

.

Перемещение внутренней точки конечного элемента с использованием узлового вектора (1.9) теперь можно аппроксимировать выражением

,                                                                     (11)

где под символом q по прежнему понимается перемещение u или осевое смещение ν, которые можно записать в матричном виде

;

,                                                                                                       (12)

где строка  — матрица-строка аппроксимирующих функций.

Аппроксимирующие полиномы Gi(x, y) (i = 1…9) определяются через полиномы qm(x, y) (m = 1…10) следующими выражениями [1]

;    ;

;   ;

;   ;

;

;

.                                                                                                       (13)

Окончательные выражения аппроксимирующих функций имеют следующий вид

;

;

;

;

;

;

;

;

.                                                                                                     (14)

Частные производные перемещений внутренней точки конечного элемента определяются выражениями

;

;

;

.                                                                             (15)

 

Литература:

 

1.    Киселев, В. А. Строительная механика. Общий курс / В. А. Киселев. — М.: Стройиздат, 1986. — 520 с.

 

Обсуждение

Социальные комментарии Cackle