Библиографическое описание:

Скрябин М. Л. Скоростная характеристика дизеля 4ЧН 11,0/12,5 с промежуточным охлаждением надувочного воздуха при работе на природном газе // Молодой ученый. — 2015. — №16. — С. 235-238.

В данной статье рассмотрено влияние применения природного газа на эффективные показатели дизеля 4ЧН 11,0/12,5 с промежуточным охлаждением надувочного воздуха в зависимости от изменения частоты вращения.

Ключевые слова:отработавшие газы, загрязнение воздуха, токсичные компоненты, эффективные показатели.

 

Скоростные характеристики изменения эффективных показателей дизеля с турбонаддувом 4ЧН 11,0/12,5 при работе дизеля на ДТ и ПГ на оптимальных установочных УОВТ в зависимости от изменения частоты вращения коленчатого вала представлены на рис. 1 [1–8].

Сравнивая графики работы дизеля на ДТ и ПГ (рис. 4.5) можно отметить следующее. Кривые эффективной мощности Ne и крутящего момента Мк при работе дизеля на ДТ и ПГ совпадают, т. е. при переходе на ПГ мощностные показатели дизеля полностью сохраняются. Значение эффективной мощности при n = 1400 мин -1 составляет 55 кВт и увеличивается до 90 кВт при n = 2400 мин -1. Значение крутящего момента Мк при n = 1400 мин -1 составляет 381 Н·м, увеличивается до 390 Н·м при n = 1700 мин -1, затем уменьшается до 358 Н·м при n = 2400 мин -1. Суммарный часовой расход топлива GТ Σ на всем скоростном диапазоне работы при работе дизеля на ПГ меньше часового расхода топлива при работе дизеля на ДТ вследствие того, что ПГ имеет большую теплоту сгорания. Так, при n = 1400 мин -1 часовой расход топлива при переходе на ПГ снижается с 11,8 кг/ч до 11,0 кг/ч или на 6,7 %. При n = 2400 мин -1 часовой расход топлива снижается с 21 кг/ч до 18,8 кг/ч или на 10,5 %. Аналогично значение суммарного удельного расхода geΣ при работе дизеля на ПГ ниже ge работы на ДТ [9–15].

При n = 1400 мин -1 geΣ при переходе на ПГ снижается с 209 г/(кВт·ч) до 200 г/(кВт·ч) или на 4,3 %. При n = 2400 мин -1 geΣ снижается с 227 г/(кВт·ч) до 208 г/(кВт·ч) или на 8,3 %. Часовой расход воздуха GВ при n = 1400 мин -1 при переходе на ПГ снижается с 300 кг/ч до 228 кг/ч или на 24 %, и при n = 2400 мин -1 с 591 кг/ч до 533 кг/ч или на 9,8 %. Снижение происходит вследствие того, часть воздуха на впуске замещается ПГ. Подача ПГ таким же образом влияет на коэффициент наполнения ηv и коэффициент избытка воздуха α. Так, при переходе на ПГ при n = 1400 мин -1 значение ηv снижается с 0,920 до 0,820 или на 10,9 %, а при n = 2400 мин -1 с 0,938 до 0,909 или на 3,1 %. При n = 1400 мин -1 значение α снижается с 1,75 до 1,16, а при n = 2400 мин -1 с 2,00 до 1,69. При переходе на ПГ уменьшается температура ОГ. Так, при n = 1400 мин -1 значение tг снижается с 375ºС до 335ºС или на 10,6 %, а при n = 2400 мин -1 с 430ºС до 367ºС или на 14,7 % [16–26].

Рис. 1. Влияние применения ПГ на эффективные показатели дизеля 4ЧН 11,0/12,5 с ПОНВ в зависимости от изменения частоты вращения коленчатого вала: —— — дизельный процесс, – – – — газодизельный процесс

 

Уменьшение температуры ОГ, свидетельствует об уменьшении давления и скорости в выпускном трубопроводе, что влияет на степень увеличения частоты вращения ротора турбокомпрессора. Поэтому давление наддува рК и температура на выходе из турбокомпрессора tН при работе дизеля на ПГ также снижаются. При n = 1400 мин -1 значение рК снижается с 0,147 МПа до 0,130,0 МПа или на 11,6 %, а при n = 2400 мин -1 с 0,178 МПа до 0,172 МПа или на 3,4 %. При n = 1400 мин -1 значение tН снижается с 84ºС до 76ºС или на 9,5 %, а при n = 2400 мин -1 с 121ºС до 119ºС или на 1,7 %. Значение температуры на выходе из охладителя tохл при переходе на ПГ практически не изменяется, т. е. при n = 1400 мин -1 при работе дизеля на ДТ и на ПГ значение tохл = 45ºС, а при n = 2400 мин -1 при переходе на ПГ снижается с 69ºС до 68ºС. [27–33].

 

Литература:

 

1.         Анфилатов А. А. Результаты объемного содержания оксидов азота в цилиндре дизеля при работе на метаноле // Молодой ученый. 2015. № 11 (91). с. 226–229.

2.         Анфилатов А. А. Особенности расчета периода задержки воспламенения при работе дизеля на метаноле // Молодой ученый. 2015. № 11 (91). с. 229–232.

3.         Анфилатов А. А. Теоретические расчеты содержания оксидов азота в цилиндре дизеля // Молодой ученый. 2015. № 11 (91). с. 232–235.

4.         Анфилатов А. А. Расчет содержания оксидов азота в цилиндре дизеля с воздушным охлаждением при работе на метаноле // Молодой ученый. 2015. № 11 (91). с. 235–238.

5.         Анфилатов А. А. Изменение экономических показателей дизеля при работе на метаноле // Молодой ученый. 2015. № 11 (91). с. 238–241.

6.         Анфилатов А. А. Влияние метанола на максимальное давление сгорания в цилиндре дизеля // Молодой ученый. 2015. № 12 (92). с. 117–120.

7.         Анфилатов А. А. Влияние метанола на максимальную осредненную температуру цикла в цилиндре дизеля // Молодой ученый. 2015. № 12 (92). с. 120–123.

8.         Анфилатов А. А. Влияние применения метанола на содержание оксидов азота в дизеле при изменении установочных УОВТ // Молодой ученый. 2015. № 12 (92). с. 123–125.

9.         Анфилатов А. А. Изменение объемного содержания оксидов азота в дизеле при работе на метаноле // Молодой ученый. 2015. № 12 (92). с. 125–128.

10.     Анфилатов А. А. Индицирование тепловыделения в цилиндре дизеля при работе на метаноле // Молодой ученый. 2015. № 12 (92). с. 128–131.

11.     Анфилатов А. А. Методика исследований дизеля 2Ч 10,5/12,0 по снижению содержания оксидов азота при работе на метаноле // Молодой ученый. 2015. № 12 (92). с. 131–134.

12.     Анфилатов А. А. Обработка полученных результатов исследований дизеля при работе на метаноле // Молодой ученый. 2015. № 12 (92). с. 134–136.

13.     Анфилатов А. А. Объемное содержание оксидов азота в дизеле при работе на дизельном топливе и метаноле // Молодой ученый. 2015. № 12 (92). с. 136–139.

14.     Анфилатов А. А. Расчет выбросов вредных газообразных веществ с отработавшими газами дизеля при работе на метаноле // Молодой ученый. 2015. № 12 (92). с. 139–141.

15.     Анфилатов А. А. Содержание оксидов азота в дизеле при работе на метаноле в зависимости от изменения установочных УОВТ // Молодой ученый. 2015. № 12 (92). с. 141–144.

16.     Анфилатов А. А. Влияние применения метанола на мощностные и экономические показатели дизеля // Молодой ученый. 2015. № 13 (93). с. 73–76.

17.     Анфилатов А. А. Изменение массовой концентрации оксидов азота в дизеле при работе на метаноле // Молодой ученый. 2015. № 13 (93). с. 76–79.

18.     Анфилатов А. А. Изменение мощностных и экономических показателей дизеля при работе на метаноле // Молодой ученый. 2015. № 13 (93). с. 79–82.

19.     Анфилатов А. А. Массовая концентрация оксидов азота в дизеле при работе на дизельном топливе и метаноле // Молодой ученый. 2015. № 13 (93). с. 82–85.

20.     Анфилатов А. А. Мощностные и экономические показатели дизеля при работе на дизельном топливе и метаноле // Молодой ученый. 2015. № 13 (93). с. 85–87.

21.     Анфилатов А. А. Снижение содержания оксидов азота в отработавших газах дизеля 2Ч 10,5/12,0 путём применения метанола с двойной системы топливоподачи. Диссертация на соискание ученой степени кандидата технических наук/Киров, 2009. — 184с.

22.     Лиханов В. А., Анфилатов А. А. Изменение образования оксидов азота в цилиндре дизеля при работе на метаноле // Тракторы и сельхозмашины. 2015. № 4. с. 3–5.

23.     Лиханов В. А., Лопатин О. П. Образование и нейтрализация оксидов азота в цилиндре газодизеля: Монография. — Киров: Вятская ГСХА, 2004. -106 с

24.     Лиханов В. А., Лопатин О. П. Улучшение экологических показателей дизеля 4Ч 11,0/12,5 путем применения природного газа и рециркуляции // Транспорт на альтернативном топливе. 2014. № 4 (40). С. 21–25.

25.     Лиханов В. А., Лопатин О. П. Применение природного газа и рециркуляции на тракторном дизеле 4Ч 11,0/12,5 // Тракторы и сельхозмашины. 2014. № 6. С. 7–9.

26.     Лиханов В. А., Лопатин О. П. Улучшение экологических показателей дизеля путем применения этаноло-топливной эмульсии // Тракторы и сельхозмашины. 2013. № 2. С. 6–7.

27.     Лиханов В. А., Лопатин О. П. Улучшение эксплуатационных показателей тракторного дизеля Д-240 путем применения этаноло-топливной эмульсии // Научно-практический журнал Пермский аграрный вестник: 2013. № 1 (1). С. 29–32.

28.     Лопатин О. П. Применение природного газа и рециркуляции отработавших газов для снижения токсичности тракторного дизеля // Молодой ученый. 2015. № 6–5 (86). С. 11–13.

29.     Лопатин О. П. Зонная модель процесса образования оксидов азота в цилиндре газодизеля с турбонаддувом // Молодой ученый. 2015. № 9 (89). С. 261–265.

30.     Лопатин О. П. Химизм процесса образования оксидов азота в цилиндре газодизеля с турбонаддувом // Молодой ученый. 2015. № 9 (89). С. 265–268.

31.     Лиханов В. А. Улучшение эксплуатационных показателей тракторных дизелей путем применения альтернативных топлив. Диссертация на соискание ученой степени доктора технических наук / Киров, 1999.

32.     Лиханов В. А. Улучшение эксплуатационных показателей тракторных дизелей путем применения альтернативных топлив. Автореферат диссертации на соискание ученой степени доктора технических наук / Санкт-Петербург, 1999.

33.     Лиханов В. А., Полевщиков А. С. Особенности развития топливных факелов в цилиндре дизеля при работе дизеля на этаноле // Транспорт на альтернативном топливе. 2013. № 1 (31). С. 62–65.

Обсуждение

Социальные комментарии Cackle