Библиографическое описание:

Анфилатов А. А. Объемное содержание и массовая концентрация оксидов азота в отработавших газах дизеля при работе на метаноле в зависимости от изменения частоты вращения // Молодой ученый. — 2015. — №15. — С. 78-81.

В работе приводятся результаты влияния применения метанола в дизеле 2Ч 10,5/12,0 при работе с двойной системой топливоподачи (ДСТ) при оптимальных значений установочных УОВТ на объемное содержание и массовую концентрацию оксидов азота в отработавших газах в зависимости от изменения частоты вращения.

Ключевые слова: дизель, метанол, двойная система топливоподачи, объемное содержание, массовая концентрация.

 

Графики объемного содержания r NOх расч, массовой концентрации С NOх расч оксидов азота в ОГ, рассчитанных по результатам экспериментальных данных, и rNOх опыт, полученное по результатам газового анализа ОГ, максимальной температуры и давления газов в цилиндре дизеля 2Ч 10,5/12,0 в зависимости от изменения частоты вращения коленчатого вала, представлены на рисунке 1 [1–14].

Рис. 1. Влияние применения метанола в дизеле 2Ч 10,5/12,0 при работе с ДСТ на объемное содержание и массовую концентрацию оксидов азота в ОГ, показатели процесса сгорания в цилиндре в зависимости от изменения частоты вращения и Θдт = 34 º, Θм = 34 º:  — дизельный процесс;  — метанол с запальным ДТ

 

Анализируя изменения значений объемного содержания r NOх опыт оксидов азота в ОГ дизеля 2Ч 10,5/12,0 в зависимости от изменения частоты вращения и оптимальных установочных УОВТ, можно отметить следующее. Объемное содержание r NOх опыт оксидов азота в ОГ при работе дизеля на метаноле с ДСТ существенно ниже, чем при работе на ДТ во всем диапазоне изменения частот вращения. Так, при частоте вращения n = 1200 мин-1 объемное содержание r NOх опыт оксидов азота в ОГ снижается с 480 ppm при работе на ДТ до 310 ppm при работе на метаноле с ДСТ, т. е. на 170 ppm, или на 35,4 %. Если при работе на ДТ при частоте вращения n = 2000 мин-1объемное содержание r NOх опыт оксидов азота в ОГ составляет 375 ppm, то при работе на метаноле с ДСТ только 255 ppm. Снижение составляет 120 ppm, или 32,0 % [1–14].

Анализируя изменения значений объемного содержания r NOх расч оксидов азота в ОГ дизеля 2Ч 10,5/12,0 в зависимости от изменения частоты вращения и оптимальных установочных УОВТ, можно отметить, что объемное содержание r NOх расч оксидов азота в ОГ при работе дизеля на метаноле с ДСТ существенно ниже, чем при работе на ДТ во всем диапазоне изменения частот вращения. Так, при частоте вращения n = 1200 мин-1 объемное содержание rNOх расч оксидов азота в ОГ снижается с 528 ppm при работе на ДТ до 341 ppm при работе на метаноле с ДСТ, т. е. на 187 ppm, или 35,41 %. При частоте вращения n = 2000 мин-1 снижение объемного содержания r NOх расч оксидов азота в ОГ составляет от 412 ppm при работе дизеля на ДТ до 280 ppm при работе дизеля на метаноле с ДСТ, т. е. на 132 ppm, или на 32,0 % [15–26].

Анализируя изменения значений массовой концентрации С NOх расч оксидов азота в ОГ дизеля в зависимости от изменения частоты вращения и оптимальных установочных УОВТ, можно отметить, что массовая концентрация С NOх расч оксидов азота в ОГ при работе дизеля на метаноле с ДСТ существенно ниже, чем при работе на ДТ во всем диапазоне изменения частот вращения. Так, при частоте вращения n = 1200 мин-1 массовая концентрация С NOх расч оксидов азота в ОГ снижается с 0,76 г/м3 при работе на ДТ до 0,49 г/м3 при работе на метаноле с ДСТ. Снижение составляет 0,27 г/м3, или 35,5 %. При частоте вращения n = 2000 мин-1 при работе на ДТ массовая концентрация С NOх расч оксидов азота в ОГ составляет 0,59 г/м3, а при работе на метаноле с ДСТ только 0,40 г/м3. Снижение составляет 0,19 г/м3, или 32,2 %.

Оксиды азота NO образуются во время горения в КС дизеля 2Ч 10,5/12,0 при работе на ДТ и на метаноле в различных концентрациях. Очевидно цепные реакции начинаются с появления атомарного кислорода, который образуется вследствие диссоциации молекул кислорода при высоких температурах, достигаемых в процессе горения ДТ и метанола. Поэтому при горении в цилиндре дизеля 2Ч 10,5/12,0 двух видов топлива, имеющих различный углеводородный состав, сильно отличающийся по физико-химическим свойствам друг от друга, возможно предположить, что образование NO в цилиндре связано в основном с локальными концентрациями атомов кислорода и значениями максимальных температур [27–33].

Скорость образования NO очевидно выше в пламени богатых смесей, чем в стехиометрических или бедных. Однако окончательная концентрация максимальна для смесей, которые несколько беднее стехиометрической. Зоны горения бедной смеси метанола и ДТ являются одними из главных зон образования NO, поскольку эта часть сгорает первой и имеет наибольшее время пребывания в послепламенной зоне [34–40].

 

Литература:

 

1.         Лиханов В. А., Лопатин О. П. Влияние применения природного газа и рециркуляции отработавших газов, метаноло- и этаноло-топливных эмульсий на содержание токсичных компонентов в ОГ // Транспорт на альтернативном топливе. 2015. № 4 (46). С. 42–47.

2.         Лиханов В. А., Лопатин О. П. Результаты исследований содержания оксидов азота в цилиндре газодизеля с турбонаддувом // Актуальные проблемы гуманитарных и естественных наук. 2015. № 5–1. С. 66–68.

3.         Лиханов В. А., Лопатин О. П. Исследования эффективных и экологических показателей дизеля 4Ч 11,0/12,5 при работе на природном газе с рециркуляцией отработавших газов, метаноло- и этаноло-топливных эмульсиях // Международный журнал прикладных и фундаментальных исследований. 2015. № 5–1. С. 22–25.

4.         Лиханов В. А., Лопатин О. П. Исследование экологических показателей дизеля при работе на природном газе с рециркуляцией, метаноло- и этаноло топливных эмульсиях // Современная наука: актуальные проблемы и пути их решения. 2015. № 3 (16). С. 26–28.

5.         Лиханов В. А., Лопатин О. П. Влияние рециркуляции отработавших газов на индикаторные показатели газодизеля // Современная наука: актуальные проблемы и пути их решения. 2015. № 4 (17). С. 31–33.

6.         Лиханов В. А., Лопатин О. П. Исследование показателей процесса сгорания газодизеля при работе с рециркуляцией отработавших газов // Современная наука: актуальные проблемы и пути их решения. 2015. № 4 (17). С. 33–36.

7.         Лиханов В. А., Лопатин О. П. Исследование эффективных показателей дизеля при работе на природном газе, метаноло- и этаноло-топливных эмульсиях // Международный научно-исследовательский журнал. 2015. № 4–1 (35). С. 79–81.

8.         Лиханов В. А., Лопатин О. П. Улучшение эксплуатационных показателей дизеля 4Ч 11,0/12,5 путем применения этаноло-топливной эмульсии // Известия Международной академии аграрного образования. 2013. Т. 4. № 16. С. 170–173.

9.         Лиханов В. А., Лопатин О. П. Исследование скоростного режима дизеля при работе на природном газе с рециркуляцией, метаноло- и этаноло топливных эмульсиях // Современная наука: актуальные проблемы и пути их решения. 2015. № 3 (16). С. 24–26.

10.     Лиханов В. А., Лопатин О. П. Исследование нагрузочного режима дизеля при работе на природном газе с рециркуляцией, метаноло- и этаноло топливных эмульсиях // Потенциал современной науки. 2015. № 3 (11). С. 40–44.

11.     Лиханов В. А., Лопатин О. П. Улучшение эксплуатационных показателей тракторного дизеля Д-240 путем применения этаноло-топливной эмульсии // Научно-практический журнал Пермский аграрный вестник: 2013. № 1 (1). С. 29–32.

12.     Лиханов В. А., Лопатин О. П., Олейник М. А., Дубинецкий В. Н. Особенности химизма и феноменологии образования оксидов азота в цилиндре дизеля при работе на природном газе // Тракторы и сельхозмашины. 2006. № 11. С 13–16.

13.     Лиханов В. А., Лопатин О. П., Шишканов Е. А. Снижение содержания оксидов азота в отработавших газах дизеля путем их рециркуляции // Тракторы и сельхозмашины. 2007. № 9. С. 8–9.

14.     Лиханов В. А., Лопатин О. П. Снижение содержания оксидов азота в отработавших газах дизеля 4Ч 11,0/12,5 путем применения этаноло-топливной эмульсии // Транспорт на альтернативном топливе. 2012. № 4 (28). С. 70–73.

15.              Лиханов В. А., Лопатин О. П. Улучшение экологических показателей тракторного дизеля путем применения природного газа и рециркуляции отработавших газов, метаноло- и этаноло-топливных эмульсий // Тракторы и сельхозмашины. 2015. № 3. С. 3–6.

16.     Скрябин М. Л. Влияние применения метаноло-топливной эмульсии на содержание оксидов азота в отработавших газах 4Ч 11,0/12,5 в зависимости от изменения частоты вращения // Молодой ученый. 2015. № 11(91). С. 439–442.

17.     Скрябин М. Л. Влияние применение метанола на дымность отработавших газов дизеля 2Ч 10,5/12 // Молодой ученый. 2015. № 11(91).С. 445–448.

18.     Скрябин М. Л. Влияние применения метанола с двойной системой топливоподачи в дизеле 2Ч 10,5/12,0 на показатели процесса сгорания и показатели сажесодержания // Молодой ученый. 2015. № 11(91). С. 442–445.

19.     Скрябин М. Л. Влияние применения метаноло-топливной эмульсии на массовую концентрацию оксидов азота в отработавших газах 4Ч 11,0/12,5 в зависимости от нагрузки на номинальной частоте вращения // Молодой ученый. 2015. № 12(92). С. 301–303.

20.     Скрябин М. Л. Влияние применения метаноло-топливной эмульсии на массовую концентрацию оксидов азота в отработавших газах 4Ч 11,0/12,5 в зависимости от нагрузки на частоте вращения максимального крутящего момента // Молодой ученый. 2015. № 12(92). С. 298–301.

21.     Скрябин М. Л. Влияние применения природного газа на общую токсичность дизеля 4ЧН 11,0/12,5 с ПОНВ в зависимости от изменения частоты вращения коленчатого вала // Молодой ученый. 2015. № 12(92). С. 323–326.

22.     Скрябин М. Л. Влияние применения природного газа на экологические показатели дизеля 4ЧН 11,0/12,5 при работе на частоте вращения максимального крутящего момента // Молодой ученый. 2015. № 12(92). С. 312–314.

23.     Скрябин М. Л. Влияние применения природного газа на экологические показатели дизеля 4ЧН 11,0/12,5 с ПОНВ в зависимости от изменения нагрузки на номинальной частоте вращения // Молодой ученый. 2015. № 12(92). С. 317–320.

24.     Скрябин М. Л. Влияние применения природного газа на эффективные показатели дизеля 4ЧН 11,0/12,5 в зависимости от изменения частоты вращения коленчатого вала // Молодой ученый. 2015. № 12(92). С. 320–323.

25.     Скрябин М. Л. Влияние применения природного газа на эффективные показатели дизеля 4ЧН 11,0/12,5 с ПОНВ в зависимости от изменения нагрузки // Молодой ученый. 2015. № 12(92). С. 314–317.

26.     Скрябин М. Л. Математическая модель расчета содержания оксидов азота в цилиндре дизеля 4 ЧН 11,0/12,5 с ПОНВ при работе на природном газе // Молодой ученый. 2015. № 12 (92). С. 309–312.

27.     Скрябин М. Л. Особенности методики стендовых исследований работы дизеля 4ЧН 11,0/12,5 с промежуточным охлаждением надувочного воздуха при работе на природном газе // Молодой ученый. 2015. № 12(92). С. 306–309.

28.     Скрябин М. Л. Особенности расчета констант скорости реакций термической диссоциации в цилиндре дизеля // Молодой ученый. 2015. № 12(92). С. 303–306.

29.     Скрябин М. Л. Исследование эффективных показателей газодизеля с промежуточным охлаждением наддувочного воздуха // Молодой ученый. 2015. № 10 (90). С. 312–315.

30.     Скрябин М. Л. Улучшение экологических показателей дизеля путем применения природного газа и промежуточного охлаждения наддувочного воздуха // Молодой ученый. 2015. № 10 (90). С. 315–318.

31.              Лиханов В. А., Россохин А. В., Чупраков А. И. Снижение выбросов сажи с отработавшими газами дизелей путем применения альтернативных топлив // Тракторы и сельхозмашины. 2012. № 9. с. 13–16.

32.              Лиханов В. А., Россохин А. В., Чупраков А. И. Особенности работы автотранспортного дизеля на этаноло-топливной эмульсии // Тракторы и сельхозмашины. 2012. № 9. с. 16–19.

33.              Лиханов В. А., Россохин А. В., Полевщиков А. С. Влияние этанола на показатели дизеля Д21А1 // Автомобильная промышленность. 2011. № 12. с. 26–27.

34.     Лиханов В. А., Россохин А. В., Олейник М. А., Рудаков Л. В. Улучшение экологических показателей дизеля с турбонaддyвом путем применения природного газа // Тракторы и сельхозмашины. 2006. № 9. с. 8–10.

35.              Лиханов, В.А., Россохин, А. В. Исследование процессов сажеобразования и сажесодержания в цилиндре быстроходного дизеля с турбонаддувом Д-245.12С при работе на компримированном природном газе // Молодой ученый. 2015. № 12 (92). с. 223–226.

36.     Лиханов В. А., Россохин А. В. Оценка влияния режимов работы дизеля Д-245.12С на дымность отработавших газов при работе на нефтяном и альтернативных топливах // Молодой ученый. 2015. № 12 (92). с. 226–229.

37.     Анфилатов А. А. Результаты объемного содержания оксидов азота в цилиндре дизеля при работе на метаноле // Молодой ученый. 2015. № 11 (91). с. 226–229.

38.     Анфилатов А. А. Особенности расчета периода задержки воспламенения при работе дизеля на метаноле // Молодой ученый. 2015. № 11 (91). с. 229–232.

39.     Анфилатов А. А. Теоретические расчеты содержания оксидов азота в цилиндре дизеля // Молодой ученый. 2015. № 11 (91). с. 232–235.

40.     Анфилатов А. А. Расчет содержания оксидов азота в цилиндре дизеля с воздушным охлаждением при работе на метаноле // Молодой ученый. 2015. № 11 (91). с. 235–238.

Похожие статьи

Объемное содержание и массовая концентрация оксидов азота в отработавших газах дизеля при работе на метаноле и n = 1400 мин-1

Изменения объемного содержания и массовой концентрации оксидов азота в отработавших газах дизеля при работе на метаноле

Влияние применения метаноло-топливной эмульсии на объемное содержание оксидов азота в отработавших газах дизеля 4Ч 11,0/12,5 в зависимости от изменения установочного УОВТ при работе на частоте вращения максимального крутящего момента

Влияние применения метаноло-топливной эмульсии на объемное содержание оксидов азота в отработавших газах дизеля 4Ч 11,0/12,5 в зависимости от изменения установочного УОВТ при работе на номинальной частоте вращения

Влияние применения метаноло-топливной эмульсии на содержание оксидов азота в отработавших газах 4Ч 11,0/12,5 в зависимости от изменения частоты вращения

Обсуждение

Социальные комментарии Cackle

Похожие статьи

Объемное содержание и массовая концентрация оксидов азота в отработавших газах дизеля при работе на метаноле и n = 1400 мин-1

Изменения объемного содержания и массовой концентрации оксидов азота в отработавших газах дизеля при работе на метаноле

Влияние применения метаноло-топливной эмульсии на объемное содержание оксидов азота в отработавших газах дизеля 4Ч 11,0/12,5 в зависимости от изменения установочного УОВТ при работе на частоте вращения максимального крутящего момента

Влияние применения метаноло-топливной эмульсии на объемное содержание оксидов азота в отработавших газах дизеля 4Ч 11,0/12,5 в зависимости от изменения установочного УОВТ при работе на номинальной частоте вращения

Влияние применения метаноло-топливной эмульсии на содержание оксидов азота в отработавших газах 4Ч 11,0/12,5 в зависимости от изменения частоты вращения