Библиографическое описание:

Ерошкина Н. А., Коровкин М. О., Теплова М. Ф. Перспективы промышленного производства геополимерных вяжущих на основе отходов горнодобывающей промышленности // Молодой ученый. — 2015. — №11. — С. 540-543.

Рассмотрены преимущества технологии геополимерных материалов. Приведен анализ проблем, не позволяющих наладить промышленное производство и широкое использование этих материалов в строительстве. Предложены пути решения этих проблем.

Ключевые слова: геополимерные вяжущие, энергосберегающие технологии, отходы горнодобывающей промышленности.

 

Развитие экономики, повышение качества жизни невозможно без строительства новых и реконструкции существующих промышленных, транспортных, жилых и общественных зданий и сооружений. Необходимое увеличение объемов производства строительной индустрии может быть достигнуто за счет значительного роста добычи минерально-сырьевых ресурсов. Однако повышение интенсивности добычи полезных ископаемых на разрабатываемых месторождениях и ввод в эксплуатацию новых месторождений сопряжены с определенными экологическими проблемами, что в значительной степени снижает достигнутое в результате строительства повышение качества жизни.

Решение проблемы снижения ресурсоемкости строительной индустрии возможно за счет вовлечения в производство строительных материалов многотоннажных отходов в качестве исходного сырья. Несмотря на то, что эта задача стоит перед строительным материаловедением уже достаточно давно, доля отходов в сырье для производства строительных материалов на сегодняшний день все еще не велика.

Незначительные объемы производства строительных материалов, изготовленных на основе отходов и побочных продуктов промышленности, можно объяснить следующими факторами: нестабильностью состава отходов; низкой платой за хранение отходов на свалках и полигонах; дешевизной и доступностью природного сырья. Можно считать, что в настоящее время развитие технологий, основанных на использовании отходов, находится в нашей стране на начальном этапе. Сегодня лишь некоторые из подобных технологий позволяют получать строительные материалы на основе отходов с более высокими, чем у традиционных материалов, технологическими, эксплуатационными и экономическими характеристиками.

Более благополучная ситуация складывается в промышленно развитых странах, в которых бóльшая часть промышленных отходов находит применение. Создание комплекса технологий, в которых применяются отходы, стала возможной в результате проведения больших объемов научно-исследовательских работ, направленных на решение проблемы утилизации побочных отходов промышленности.

Разработка технологий геополимерных материалов на основе природных и техногенных алюмосиликатных материалов относится к числу наиболее перспективных направлений создания новых энерго- и ресурсосберегающих технологий [1–4]. Расчеты показывают, что суммарные затраты тепловой и электрической энергии для производства геополимерных материалов в 2–3 раза ниже, чем энергетические затраты для производства традиционных строительных материалов (см. рис.1).

Рис. 1. Затраты энергии на производство различных видов строительных материалов в кДж/кг готовой продукции

 

Кроме экономической составляющей снижения энергопотребления строительной индустрии в последнее время большее значение получает его экологическая составляющая. Соотношение выбросов углекислого газа и портландцемента на современных предприятиях находится в интервале 0,7…1. Замена портландцемента на геополимерное вяжущее позволяет снизить выбросы в атмосферу этого парникового газа (рис. 2). С учетом того, что производство портландцемента дает около 5 % промышленных выбросов углекислого газа роль этого фактора в будущем может иметь решающее значение при определении направлений развитиях промышленности строительных материалов.

Рис. 2. Эмиссия углекислого газа при производстве различных видов строительных материалов

 

Следует отметить, что интенсивность разработки геополимерных материалов и их исследования в странах с быстрорастущей экономикой — Китае, Индии, Бразилии, странах Юго-Восточной Азии — сопоставима с интенсивностью исследований по этой тематике в промышленно развитых странах. Это связано с большими объемами неиспользуемых промышленных отходов, потенциально пригодных для производства геополимеров.

Особое внимание развитию технологии геополимеров уделяется в Китае, что связано с потребностью в вяжущих для реализации колоссальных объемов промышленного, транспортного и жилищного строительства в этой стране. Несмотря на то, что в Китае сосредоточено больше половины мирового производства портландцемента и цементная промышленность продолжает демонстрировать высокую динамику роста, китайские исследователи активно занимаются созданием технологий геополимеров. Это связано с возможностью производить такие вяжущие на основе золошлаковых отходов тепловых электростанций и других промышленных отходов.

В промышленно развитых странах со строгим экологическим законодательством золошлаковые отходы ТЭС, шлаки, отходы горной промышленности в большинстве своем находят применение в строительстве и других отраслях. В развивающихся странах, таких как Китай, Индия, страны Латинской Америки, промышленные отходы могут рассматриваться как сырьевой ресурс для создания подотраслей производства новых видов строительных материалов, в том числе на основе технологии геополимеров. В связи с этим значительных темпов развития крупномасштабных производств следует ожидать в развивающихся странах с быстрорастущей экономикой.

Несмотря на значительные преимущества геополимерных материалов их производство ни в одной из стран не вышло на промышленный уровень. К числу основных причин, не позволяющих развернуть массовое производство геополимеров, можно отнести недостаточную исследованность закономерностей, определяющих технологические и эксплуатационные свойства этих материалов, непостоянство характеристик промышленных отходов, используемых в качестве сырья и отсутствие стандартов на геополимерные материалы.

В России имеются большие запасы отходов производства, которые могли бы использоваться при производстве геополимерных строительных материалов по энерго- и ресурсосберегающим технологиям. К числу таких отходов относятся золы ТЭС и доменные шлаки. Однако наибольшее количество потенциального сырья для производства геополимерных материалов образуется в горнодобывающей промышленности [5]. Объемы производства таких отходов составляют десятки миллионов тонн [6].

Для обозначения геополимерного вяжущего на основе отходов добычи и переработки магматических горных пород в нашей стране иногда используют термин «минерально-щелочное вяжущее» [5]. По технологическим и эксплуатационным свойствам это вяжущее не является полным аналогом портландцемента. По ряду свойств геополимерные вяжущие на основе горных пород уступают цементу. Однако, уже сегодня данные, полученные при исследовании минерально-щелочного вяжущего, дают возможность разработать его промышленную технологию и заменить цемент при производстве некоторой части номенклатуры сборных железобетонных изделий. Промышленное применение геополимерного вяжущего позволит не только снизить дефицит цемента, но и решить некоторые экологические проблемы горнодобывающей отрасли.

На предприятиях, занимающихся добычей щебня, ежегодно образуется несколько миллионов тонн отходов в виде отсевов дробления, использование которых в строительстве весьма ограничено. На ведущем предприятии по добыче и переработке щебня России ОАО «Павловск-Гранит» получает развитие направление глубокой переработки отсева дробления щебня, заключающейся в его сепарации на фракции за счет промывки отсева в спиральном классификаторе и удалении пылевидной части — пульпы [6]. Частично востребованными в дорожном строительстве и при изготовлении мелкозернистых бетонов являются фракции 0,2...5 мм, количество которых при сепарации составляет около 80 % [7]. Невостребованные дисперсные фракции 5...200 мкм и менее, по нашему мнению, могут найти рациональное применение при изготовлении геополимерного вяжущего.

В настоящее время использование геополимерных вяжущих на основе различного сырья не выходит за рамки опытно-промышленного применения [1–5]. Это вполне оправданно с учетом недостаточной изученности этого материала. Увеличение объемов использования геополимерных вяжущих, применение их для производства ответственных конструкций возможно после получения исчерпывающих знаний о процессах структурообразования, происходящих в них, а также о процессах, протекающих в этих материалах в различных условиях эксплуатации в результате проведения системных исследований всех стадий жизненного цикла геополимеров — от условий образования и свойств сырья до эксплуатационного поведения этих материалов и возможностей их утилизации. После решения этих задач возможно создание предприятий по производству строительных материалов на основе геополимерных вяжущих.

 

Литература:

 

1.         Sumajouw, D. M. J. Fly ash-based geopolymer concrete: study of slender reinforced columns / D. M. J. Sumajouw, D. Hardjito, S. E. Wallah, B. V. Rangan // Journal of Materials Science. 2007. Vol. 42, № 9. Р. 3124–3130.

2.         Sumajouw, M.D. J. Low-calcium fly ash-based geopolymer concrete: reinforced beams and columns: Research Report GC3 / M.D. J. Sumajouw, B. V. Rangan.– Faculty of Engineering Curtin University of Technology Perth, Australia, 2006.

3.         Aldred, J. Is geopolymer concrete a suitable alternative to traditional concrete? / J. Aldred, J. Day // 37th Conference on our world in concrete & structures, CI-PREMIER PTE LTD, (29–31 August 2012), Singapore. URL: http://www.wagnerscft.com.au/files/9713/4870/0921/ geopolymer_concrete_singapore_2012.pdf (дата обращения 6.5.2015).

4.         World’s first public building with structural Geopolymer Concrete / URL: http:// http://www.geopolymer.org/news/worlds-first-public-building-with-structural-geopolymer-concrete (дата обращения 6.5.2015).

5.         Ерошкина, Н. А. Минерально-щелочные вяжущие: моногр. / Н. А. Ерошкина, В. И. Калашников, М. О. Коровкин. — Пенза: ПГУАС, 2012. -152 с.

6.         Макеев, А. И. Глубокая переработка отсевов дробления гранитного щебня для их комплексного использования в производстве строительных материалов // Научный вестник ВГАСУ. Строительство и архитектура. — 2010. — Вып. № 1 (17). — С. 92–97.

7.         Макеев, А. И. Научно-техническое обоснование технологии глубокой переработки отсевов дробления гранитного щебня // Научный вестник ВГАСУ. Строительство и архитектура. — 2011. — Вып. № 3 (23). — С. 56–67.

Основные термины: строительных материалов, геополимерных материалов, основе отходов, промышленных отходов, видов строительных материалов, производства строительных материалов, производства геополимерных материалов, геополимерных вяжущих, geopolymer concrete, материалов многотоннажных отходов, основе отходов горнодобывающей, дробления гранитного щебня, геополимерных строительных материалов, основе отходов и побочных, технологии геополимерных материалов, различных видов строительных, ash-based geopolymer concrete, запасы отходов производства, геополимерного вяжущего, основе отходов добычи

Обсуждение

Социальные комментарии Cackle