Библиографическое описание:

Агзам Е. М., Кузнецов М. С., Семенов А. О. Современные технологии обращения с радиоактивными отходами // Молодой ученый. — 2015. — №10. — С. 114-116.

В данной статье рассмотрены проблемы обращения с РАО на сегодняшний день. Представлены ряд существующих и перспективных методов для иммобилизации твердых отходов. Проведен краткий обзор применения технологии СВС для получения матричных материалов.

Ключевые слова: радиоактивные отходы, СВС, матричные материалы.

 

В 20 веке человечество столкнулась с новыми проблемами и одна из них — радиоактивные отходы, образованные с АЭС. За период времени равный примерно 50 лет на земле образовалась около десятков миллиардов кюри радиоактивных отходов, и эти цифры растут с каждым годом. [1].

Под радиоактивными отходами понимают смесь стабильных химических элементов и радиоактивных осколков реакции деления, трансурановых элементов (за счет реакция нейтронного захвата ядерным топливом), представляющих наибольшую опасность для биосферы: Rb, Sr, Y, Zr, Mo, Ru, Rh, Pd, I, Cs, Ba, La, Np, Pu, Am и Cm [2].

В настоящее время согласно существующим разработкам Международного агентства по атомной энергии основной задачей обращения с РАО является их безопасная утилизация, с минимальным воздействием на окружающую среду. Выделяют следящие принципы обращения:

а)     Изоляция — блокирование контакта радиоактивного отхода с окружающей средой.

б)     Рассеяние — минимизация активности отходов путем разбавления другими веществами.

в)     Применение химически устойчивых форм и соединений.

г)     Использование матричных технологий.

При использовании матриц материалы подбираются таким образом, чтобы радиоактивные включения в больших количествах надежно связывались и удерживались матричным материалом на протяжении всего периода обращения, при этом не вступая в химические контакты с другими материалами и соединениями, например, с водой. Кроме выше сказанного, предъявляется комплекс физико-механических свойств, таких как, механическая прочностью, высокая теплопроводность, вследствие саморазогрева радиоактивных отходов, повышенной радиационной стойкостью.

На сегодняшний день к наиболее перспективным материалам, используемых в качестве иммобилизационных матриц можно отнести боросиликатные и алюмофосфатные стекла, кристаллические минеральные соединения типа: синроки, титонаты, перовскиты, моноциты, иттрий-алюминиевый гранат и др. [3–5].

К существующим методикам производства отверждённых форм РАО относятся следующие технологии: плавление, твердофазный и гидротермальный синтез, получение материалов в режиме твердопламенного горения (СВС) [6–8].

Технология плавление в печи, наиболее простой, удобный и отработанный методом, предполагает получение относительно легкоплавких форм, что широко используется при производстве матричного стекла. Существенным недостатком данного метода в целом является высокая агрессивность стекольных расплавов (особенно фосфатных) по отношению к большинству конструкционных материалов, что предполагает использование дорогостоящих печей при производстве. Другой немаловажный недостаток — высокие энергетические затраты при плавлении стекла с радиоактивными компонентами в течении продолжительного времени и высоких температурах.

При твердофазном синтезе основными этапами являются получение порошков заданного состава, формирование заготовок и высокотемпературная консолидация. Для консолидации порошков применяют горячее прессование и холодное прессование с последующим спеканием.

В отличие от технологии плавления в печи, гидротермальный синтез осуществлять реакции между веществами при температурах до 800°С), однако важным препятствием к широкому использованию данной технологии является синтезирование продукта при довольно высоком давлении, достигающим нескольких тысяч атмосфер.

При самораспространяющемся высокотемпературном синтезе, или другими словами в режиме твердопламенного горения, происходит самопроизвольное распространение зоны твердофазной реакции в спрессвоанных в горючей смеси (горение предварительно смешанных реагентов) или распространение пламени с высокотемпературной волной горения. К преимуществам технологии СВС следует отнести простоту аппаратного исполнения, сравнительно малые энергозатраты и т. д. [9].

Кроме того, СВ-синтез характеризуется такой уникальной особенностью, как существование в течение протекания взаимодействия высокотемпературной среды, допускающей различные типы дополнительных внешних воздействий, посредством которых представляется регулирование структуры и свойств конечных продуктов, т. е. позволяет получать новые материалы с требуемым набором свойств.

Важной чертой СВС-технологии применительно к проблеме иммобилизации ВАО являются также высокие скорости процесса, что должно приводить к значительному снижению потерь легколетучих компонентов за счет уменьшения времени нахождения последних в зоне высоких температур.

Существует большое количество реакций для получения матриц требуемого состава. Отличаются они друг от друга составом исходной шихты, начальными соотношениями элементов, количеством стабилизирующих добавок, типом технологического процесса, в зависимости от этого процессы идут при разных условиях (температурах горения, тепловыделение, скорости распространения волны горения), а в итоге получаются различные минералы по составу, структуре и разными изоморфными свойствами по отношению к радиоактивным отходам.

В состав шихты включают энергообразующие компоненты: горючее в виде порошков металлов и кислородосодержащие окислители, в количестве, обеспечивающем полное окисление металла, а также не участвующие в энерговыделение оксидные добавки, позволяющие реализовать оптимальные режимы горения (например, для понижения температуры горения) и являющимся структурообразующим материалом. Металлокерамическую шихту готовят из компонентов ряда s-, p-, d-, f-элементов и их оксидов. Выбор конкретных компонентов и их количество определяется конечным составом продуктов металлотермического процесса и возможностью реализации синтеза металлокерамики в требуемом режиме. В приготовленную шихту, содержащую неорганические связующие, вводят высокоактивные отходы в виде оксидов, металлов или их смесей. Количество вводимых отходов определяется конечным составом металлокерамики и сохранением термичности шихты в пределах, обеспечивающих зажигание и горение в требуемом режиме. Все компоненты шихты содержат элементы, входящие в состав целевого продукта. Стартовый состав шихты следует выбирать так, чтобы компоненты были в соотношении близком к расчетному составу целевого продукта.

Первая работа, которую можно найти в литературе (Spector, 1968) основана на следующей реакции:

4Fe2O3 + 3Si → 3Fe2SiО4 + 2Fe,                                                                                  (1)

Результатом которой являлось получение полисиликатной системы, предназначенной для надежной иммобилизации отходов. РАО, используемы в данной эксперименте, представляли собой водные растворы, были подвержены выпариванию, сушке и денитрификация для перевода в оксидную форму. Далее, в соответствии с реакцией (1), к оксиду Fe2O3 добавлялся порошок Si и смесь подвергалась СВ-синтезу. Иногда в эту смесь вводился оксид кремния с целью управления скоростью реакции и составом продуктов синтеза.

Другим вариантом получения отвержденной формы радиоактивных отходов с использованием технологии самораспространяющегося высокотемпературного синтеза является методика, описанная Spector с коллегами в 1968 г. Главным отличием, являлся перевод всех солей в сульфаты перед фиксацией радиоактивных элементов:

4Al2(SO4)3 + 9Si → 2Al2O3 + 9SiO2 + 6S,                                                                   (2)

с получением полисиликатная структура для иммобилизации отходов.

Российские ученые рассмотрели возможность прямого включение радиоактивных отходов в структуры цирконолита и перовскита с применением технологии СВС-компактирования [10]. Порошки оксидов титана, кальция, циркония и титана разбавлялись инертными добавками изотопов 90Sr и 137Cs — имитаторов радиоактивных отходов. В соответствии с реакциями:

2Ca(NO3)2 + 9Ti + 4CaO + ТiO2 → 6СаТiO3 + 4TiN,                                                 (3)

2Ca(NO3)2 + 9Ti + 4СаО + TiO2 + ZrO2 → 6CaZrTi2O7 + 4TiN,                                 (4)

в данную шихту вводились нитрид кальция, алюминия и оксида кремния. Исходная смесь подвергалась поджигу и одновременно компактировалась в специальных прессформах.

При синтезировании матрицы по реакции (3) образовывается персовскиетное соединение, замена ТiO2 в исходной смеси на ZrO2 приводит к образованию цирконолитных фаз, согласно реакции 4. Исследования показали возможность замещение изотопом 90Sr кальция в синтезируемой перовскитной керамике. С другой стороны, цезий остается включенным в некристаллическую фазу из оксидов кремния и алюминия.

Определение скоростей выщелачивания данных имитаторов радиоактивных нуклидов из синтезированных матриц показали более высокую химическую устойчивость по сравнению с широко используемыми технологиями обращения с РАО, например, включение радиоактивных отходов в различные стекла.

В настоящее время ученые Томского политехнического университета проводят исследования матричного материала для иммобилизации РАО, получаемого в режиме СВС на основе алюминида никеля. К достоинствам данного материала можно отнести высокую термическую и коррозионную стойкость, хорошую радиационную стойкость, повышающуюся с ростом температуры, способность протекания СВ-реакции при высоких степенях разбавления трансурановыми элементами (до 60 %). Кроме всего прочего, при использовании никель-алюминиевой матрицы, алюминий способен связываться с некоторыми актиноидами элементами, например, с плутонием, с образованием алюминидов, так же обладающими низкими скоростями выщелачивания и высокой коррозионной стойкостью.

 

Литература:

 

1.                  Скачек М. А. Обращение с отработавшим ядерным топливом и радиоактивными отходами АЭС. — М.: ИД МЭИ, 2007.

2.                  Дмитриев С. А., Стефановский С. В. Обращение с радиоактивными отходами. — 2000.

3.                  Соболев И. А., Ожован М. И., Щербатова Т. Д. Стекла для радиоактивных отходов. — М.: Энергоатомиздат, 1999.

4.                  Стефановский С. В. и др. Керамика для иммобилизации актиноидных отходов //Вопросы радиац. безопасности. — 2002. — №. 1. — С. 15–27.

5.                  Стефановский СВ., Князев О. А., Юдинцев СВ., Никонов Б.С, Омельяненко Б. И., Дей Р. А., Вэнс Е. Р. Синтез и характеристика материала Synroc, полученного индукционным плавлением в холодном тигле. // Перспективные материалы, 1997. № 2.

6.                  Петров Ю. Б. Индукционная плавка окислов.-Л.: Энергоатомиздат.-1983.

7.                  Sobolev LA., Lifanov F. A., Dmitriev S. A., et.al. Vitrification of Radioactive Wastes by Coreless Induction Melting in Cold Crucible// Proceeding of the International Topical Meeting on Nuclear and Hazardous Waste Management SPECTRUM'94, August 14–18, 1994, Atlanta, GA. ANS, La Grange Park.-1994.

8.                  Князев О. А., Лифанов Ф. А., Лопух Д. Б., и др. Синтез методом индукционной плавки в холодном тигле минералоподобных материалов, содержащих имитированные радиоактивные отходы// Физика и химия обработки материалов. — 1996.-№ 1.

9.                  Мержанов А. Г., Боровинская И. П. Самораспространяющийся высокотемпературный синтез тугоплавких неорганических соединений //Докл. АН СССР. — 1972. — Т. 204. — №. 2. — С. 366–369.

10.              Баринова Т. В. и др. Использование технологии самораспространяющегося высокотемпературного синтеза для иммобилизации высокоактивных отдавив в минералоподобную керамику. Иммобилизация цезия в керамике на основе перовскита и цирконолита //Радиохимия. — 2008. — Т. 50. — №. 3. — С. 274–278.

Обсуждение

Социальные комментарии Cackle