Библиографическое описание:

Григорьев И. В., Мустафина С. А. Реализация численного алгоритма метода вариаций в пространстве управлений // Молодой ученый. — 2015. — №9. — С. 110-115.

В статье разработан алгоритм и реализована программа решения задачи оптимального управления на основе метода вариаций. Реализованный алгоритм был апробирован на тестовых примерах.

Ключевые слова: метод вариаций, оптимальное управление, численное решение.

 

Введение. Задачи оптимального управления встречаются в различных сферах человеческой деятельности. Каждое разумное действие является в определенном смысле и оптимальным, ибо оно, как правило, выбирается после сравнения с другими вариантами. Интерес к задачам наилучшего выбора был высоким всегда, но особенно возрос в последние годы в связи с интенсивным развитием науки и техники. В связи с этим возникает проблема выбора из множества вариантов решения задачи того, который обеспечивает наилучшее или наиболее эффективное распределение ресурсов. Этот наилучший вариант и называется оптимальным. Выбор оптимального варианта определяется каким-либо показателем, который называется критерием оптимизации.

Постановка задачи. Пусть управляемый процесс представлен системой дифференциальных уравнений:

                                                                                        (1)

где  — фазовые переменные, а  — переменные управления, .

При заданы все начальные значения фазовых переменных :

, .                                                                                                   (2)

На управление и фазовые переменные наложены ограничения типа:

                                                                                     (3)

Область, ограниченную неравенством для управлений в пространстве переменных , будем называть допустимой областью .

Критерий оптимизации пусть задан в терминальном виде:

                                                                                 (4)

Требуется найти такое управление , удовлетворяющее условиям (3), чтобы величина  приняла минимальное значение.

Для численного решения данной задачи был составлен алгоритм метода вариации в пространстве управлений:

1.                  Интегрируя систему (1) при  с начальными условиями (2) в интервале , вычисляем значение критерия I. Запоминаем значение критерия и управление в достаточном числе точек.

2.                  Варьируем управление по направлениям  в точке . Интегрируем систему (1) при с начальными условиями (2) в интервале , вычисляем значение критерия I. Если критерий улучшился, и при этом выполняются условие (3), то запоминаем это значение критерия и управление в достаточном числе точек.

3.                  Переходим к следующей точке  и выполняем п.2 со «старым» приближением . После того, как пробежим все точки отрезка , переходим к . Повторяем цикл до тех пор, пока не выполнится условие . Если критерий на отрезке не улучшился, то уменьшаем вариацию вдвое, т. е. .

Тестирование алгоритма. На основе созданного алгоритма реализована программа. Рассмотрим работу полученного алгоритма на следующих примерах. Для вычисления погрешностей будем использовать евклидову норму:

  

Пример 1. Допустим, что некоторый процесс описывается системой дифференциальных уравнений:

                                                                                                    (5)

с начальными условиями:

,                                                                                                       (6)

и следующими ограничениями на переменную времени:

                                                                                                                      (7)

и на управление:

                                                                                                                            (8)

Критерий оптимизации имеет вид

                                                                                            (9)

Требуется найти оптимальное программное управление  и соответствующую ему траекторию , которые удовлетворяют уравнениям (5)-(6), ограничениям (7)-(8) и условию (9).

Аналитическое решение данной задачи представлено в [2].

На рис. 1 — рис. 2 изображено численное решение данной задачи, при начальном приближении .

Рис. 1. Графики оптимальных траекторий для примера 1

 

Рис. 2. График оптимального управления для примера 1

 

Сравнивая полученные численные и аналитические значения, вычислим погрешности для управления и траекторий.

  

Пример 2. Пусть управляемый процесс описывается системой дифференциальных уравнений:

                                                                                                                (10)

с начальными условиями:

,                                                                                                     (11)

и следующими ограничениями на переменную времени:

                                                                                                                      (12)

и на управление, фазовые переменные:

                                                                                                             (13)

Критерий оптимизации имеет вид

                                                                            (14)

Требуется найти оптимальное программное управление  и соответствующую ему траекторию , которые удовлетворяют уравнениям (10)-(11), ограничениям (12)-(13) и условию (14).

Аналитическое решение данной задачи представлено в [1].

На рис. 3 — рис. 4 изображено численное решение данной задачи, при начальном приближении .

Рис. 3. Графики оптимальных траекторий для примера 2

 

Рис. 4. График оптимального управления для примера 2

 

Сравнивая полученные численные и аналитические значения, вычислим погрешности для управления и траекторий.

  

Пример 3. Пусть управляемый процесс описывается системой дифференциальных уравнений:

                                                                                               (15)

с начальными условиями:

,                                                                                                       (16)

и следующими ограничениями на переменную времени:

                                                                                                                         (17)

и на управление:

                                                                                                                       (18)

Критерий оптимизации имеет вид

                                                                                               (19)

Требуется найти оптимальное программное управление  и соответствующую ему траекторию , которые удовлетворяют уравнениям (15)-(16), ограничениям (17)-(18) и условию (19).

Аналитическое решение данной задачи представлено в [1].

На рис. 5 изображено численное решение данной задачи, при начальном приближении .

Рис. 5. Графики численного решения примера 3

 

Сравнивая полученные численные и аналитические значения, вычислим погрешности для управления и траекторий.

  

Выполненный сравнительный анализ приближенного и аналитического решения задач показал их удовлетворительное согласование между собой.

 

Литература:

 

1.      Островский Г. М., Волин Ю. М. Методы оптимизации сложных химико-технологических схем. — М.: Химия. 1970. 328 с.

2.      Понтрягин Л. С. Математическая теория оптимальных процессов. — М.: Наука. 1976. 392 с.

3.      Мустафина C. А., Валиева Ю. А., Давлетшин Р. С., Балаев А. В., Спивак С. И. Оптимальные технологические решения для каталитических процессов и реакторов // Кинетика и катализ. 2005. Т. 46. № 5. С. 749–756.

4.      Мустафина С. А., Балаев А. В., Смирнов Д. Ю., Спивак С. И. Моделирование каталитического процесса дегидрирования метилбутенов // Системы управления и информационные технологии. 2006. Т. 23. № 1. С. 10–14.

5.      Федоренко Р. П. Приближенное решение задач оптимального управления. — М.: Наука. 1978. 488 с.

Обсуждение

Социальные комментарии Cackle