Библиографическое описание:

Долгова Л. А., Жаткин С. А., Салмин В. В. Анализ параметров моторного масла и технических устройств, позволяющих контролировать процессы старения моторных масел // Молодой ученый. — 2015. — №9. — С. 198-202.

Проведен анализ средств, способов и методик определения физико-химических показателей моторного масла; выполнен выбор и ранжирование наиболее информативных параметров работоспособности моторного масла, влияющих на сроки его замены.

Ключевые слова: моторное масло, параметры состояния моторного масла, кинематическая вязкость, диэлектрическая проницаемость, симплекс подобия, корреляционная связь, экспресс-контроль, термоокислительная способность, показатель качества, оптическая плотность, температура вспышки, лаборатория экспресс-анализа, щелочное число, комплексный показатель.

 

От качества смазочных материалов зависят важнейшие показатели двигателей — долговечность, надежность, токсичность отработавших газов, топливная экономичность и т. д. Большинство показателей качества моторного масла можно определить только в специализированных лабораториях, которых, как правило, нет в автотранспортных предприятиях.

В настоящее время у нас в стране для оценки качества моторных масел и организации их промышленного производства используется четырехэтапная система испытаний, включающая: квалификационные (I этап) → стендовые (II этап) → полигонные (III этап) → эксплуатационные (IV этап) испытания. В рамках четырехэтапной системы наименее продолжительным (до 10 суток) и затратным является первый этап. При этом требуется не очень большое количество испытуемого продукта (до 5…10 л). Основу квалификационной проверки составляют испытания на одноцилиндровых установках (ОЦУ) и специальных двигателях [1,2].

Оперативная оценка качества моторных масел предложена К. К. Попком, который предложил создать специальные лабораторные комплексы. В ЗАО «НАМИ-ХИМ» сформирован комплекс методов лабораторной оценки моторных масел (КМЛО), в который входит испытательное лабораторное оборудование, позволяющее определить основные эксплуатационные свойства моторных масел.

Авторы [2] оценивали термоокислительную стабильность моторных масел на лабораторной установке по показателю оптической плотности и нагарообразование по изменению потенциала электризации стержня ЕЭ после термообработки. Изменение оптической плотности образцов нефтяных фракций симбатно изменению потенциала их электризации ЕК.

Для контроля качества автомобильных эксплуатационных материалов в Москве функционирует центр мониторинга ГСМ и диагностики техники «Международный испытательный центр по горюче-смазочным материалам (МИЦ ГСМ) [3]. В арсенале центра несколько видов специализированного оборудования, в частности аналитический центр для эксплуатационных анализов масел OSA, который включает три типа анализаторов: оптический эмиссионный спектрометр (определение металлов износа и деградации присадок), ИК-Фурье спектрометр (определение содержания воды, топлива, степени окисления, нитрования, сажи) и автоматический капиллярный вискозиметр с термостатированием до 100оС. Эти анализаторы размещены в едином настольном корпусе, что позволяет сразу получать полную характеристику по каждой пробе масла.

В работе [4] в условиях небольшого транспортного предприятия для контроля качества моторных масел предлагается использовать следующие экспресс-методы оценки качества работающих масел: по концентрации охлаждающей жидкости — термический и метод бумажной хроматографии; по наличию топлива — по температуре вспышки в закрытом электротигле и сравнение с эталоном по вязкости; по наличию абразивных частиц — метод истирания; по вязкости — сравнение с эталоном и термический; по моюще-диспергирующе-стабилизирующим свойствам и загрязненности масла механическими примесями — метод бумажной хроматографии; по противоизносным и нейтрализующим свойствам — по водородному показателю рН. Для реализации вышеперечисленных методов оценки качества моторного масла в Челябинском ГАУ разработан портативный комплекс средств (КДМП-3), позволяющий как в стационарных, так и в полевых условиях оценивать качество свежих и работающих масел.

В МГАДИ [5] разработана система контроля состояния и восстановления работоспособности масел, в состав оборудования которой входит лаборатория экспресс-анализа топлив и масел «ЛАМА-7» и малогабаритная передвижная установка для восстановления эксплуатационных свойств масел.

Разработан [6] способ определения состояния и момент замены смазочных материалов и рабочих жидкостей гидросистем, предусматривающий учет всех основных факторов (показателей), характеризующих качество и состояние масел. Работоспособность последних оценивается комплексным показателем по формуле:

где d1...dm — нормированные показатели состояния; m — число учитываемых факторов.

Для определения и контроля диэлектрической проницаемости моторного масла разработаны различные способы и устройства [7].

В работе [8] предложена схема основных направлений изучения процесса и метод исследования старения масла в дизелях, а также экспериментальные зависимости изменения оптической плотности, количества карбонилсодержащих соединений и содержания нерастворимых в бензине загрязнений от наработки масла при различных условиях.

Известны методы и способы оценки износа двигателя по состоянию моторного масла [9].

В работе [10] предполагается, что между единичными показателями состояния моторного масла существует функциональная связь. Рассматривается возможность связать состояние масла с изменениями энтропии S системы. Допускается, что если масло при работе двигателя теряет работоспособность при достижении определенного значения ΔS, одинакового для всех масел независимо от их состава, типа двигателя и особенностей его эксплуатации, то срок замены τ масла в двигателе будет зависеть от различных параметров: исходной концентрации с0 присадки в масле, скорости k их срабатывания в заданных условиях эксплуатации, термической устойчивости Т масляной композиции и состава смазочной среды, характеризуемой химическим потенциалом μ (или электропроводность), который в данной работе выдвигается как наиболее информативный.

Замену масла по фактическому состоянию можно выполнять при достижении контролируемых показателей качества масла предельных значений. В различных источниках номенклатура этих показателей включает: вязкость моторного масла [11], количество нерастворимых в легких растворителях продуктов [12], щелочное число [11, 13], кислотное число [12], водородный показатель [13], диспергирующе-стабилизирующую способность [14], присутствие в масле топлива (по температуре вспышки) [11], присутствие антифриза и воды [16], присутствие конструкционных материалов, кремния [15].

В работах [12] для установления необходимого момента смены работавших масел по фактическому состоянию предлагается использовать комплексные (интегральные) показатели, принцип формирования которых основан на сочетании единичных показателей, наиболее информативных для заданных условий эксплуатации.

В работе [17] проведен анализ различных комплексных показателей старения масла, например, интегральный комплексный показатель ИПС, по которому можно количественно оценить работоспособность масел в форсированных автомобильных дизельных двигателях:

где В0, Вt — вязкость масла соответственно свежего и при наработке t; Щ0, Щt — щелочное число масла соответственно свежего и при наработке t, пt, ДСt — массовая доля загрязняющих примесей и показатель диспергирующих свойств при наработке t.

Или обобщенный комплексный показатель (ОКП) [17], представляющий собой сумму шести единичных показателей: содержания в масле железа, кремния и нерастворимого осадка, вязкости, зольности и щелочного числа:

где Кi — показатель состояния моторного масла, балл; n=6 — число определяемых показателей; αi — коэффициент интенсивности изменения i-го показателя за 1 час;

Т — наработка двигателя.

Еще один интегральный показатель — индекс старения (критерий CQ — Condition Quotent), предельное значение которого должно быть меньше или равно 1,5. Критерий CQ определяют по формуле:

СQ = fF/(TBN + 2) или СQ = fF/(SAN + 2)

где fF — содержание в масле загрязнений, нерастворимых в смеси бензола с метанолом; TBN — общее щелочное число масла; SAN –содержание сильных кислот в масле.

В работе [18] в качестве комплексного показателя старения масла предложено отношение прироста вязкости к приросту физической плотности. Оптическая плотность как характеристика работавшего масла используется в виде коэффициента физической стабильности (КФС), определяемого из выражения:

КФС = (Dн — Dк) 100 / Dн

где Dн, Dк — начальная и конечная оптическая плотность верхнего слоя масла (толщина 2 мм) до и после центрифугирования.

Для контроля качества нефтепродуктов внедрена в производство и используются переносная лаборатория КИ-28105 и передвижная лаборатория КИ-28099, позволяющие определять механические примеси, наличие воды, кинематическую вязкость, температуру вспышки в закрытом тигле.

В настоящее время продолжаются экспериментальные исследования с целью разработки прибора, позволяющего по значению одного-двух параметров моторного масла определять его состояние и остаточный ресурс до замены.

С целью выявления параметров моторного масла, в наибольшей степени влияющих на сроки его замены, был проведен анализ 135 литературных источников [19, 20], в которых представлены результаты исследования изменения 33 физико-химических показателей моторного масла в процессе его работы. В ходе их ранжирования были выбраны 10 наиболее значимых (табл. 1).

Таблица 1

Ранжирование по 10 показателям, наиболее часто применяющимся для анализа процесса старения моторного масла

Название показателя качества моторного масла

Количество литературных источников

Весовой коэффициент

1.                  

Загрязненность механическими примесями

24

0,242

2.                  

Вязкость

15

0,152

3.                  

Диэлектрическая проницаемость

10

0,101

4.                  

Щелочное число

9

0,091

5.                  

Моюще-диспергирующе-стабилизирующие свойства

8

0,081

6.                  

Содержание воды

8

0,081

7.                  

Кислотное число

7

0,071

8.                  

Плотность

7

0,071

9.                  

Оптическая плотность

6

0,061

10.              

Температура вспышки

5

0,051

 

Всего

99

1

 

По результатам ранжирования факторов, определяющих работоспособность моторного масла, следует, что с учетом весовых коэффициентов наиболее значимыми являются: загрязненность, вязкость, диэлектрическая проницаемость.

Между изменениями параметров физико-химических свойств моторного масла в процессе эксплуатации и пробегом автомобиля (или временем работы масла в ДВС) существует определенная корреляционная связь. Это дает возможность, используя теорию подобия, установить их взаимозависимость с пробегом автомобиля через величину коэффициента подобия, а, следовательно, и с ресурсом работы масла в двигателе.

 

Литература:

 

1.         Чудиновских А. Л., Лашхи В. Л., Первушин А. Н., Спиркин В. Г. Комплекс методов лабораторной оценки моторных масел — как оперативный способ определения качества / Журнал Автомобильных Инженеров, № 5 (76), 2012 г.

2.         Немасадзе Г. Г., Шор Г. И., Куцев А. В. Оценка термической стабильности компонентов моторного масла для дизелей //Журнал «Строительные и дорожные машины» № 5, 2009, с. 55–57.

3.         М. Калинин Масло ставит диагноз / Журнал «Новости авторемонта», № 85, 2009 г.

4.         Ю. А. Гурьянов Показатели работающих моторных масел и методы их определения. Журнал «Автомобильная промышленность», 2005, № 10, с. 20

5.         В. А. Зорин. Контроль состояния смазочных материалов и рабочих жидкостей / Журнал «Строительные и дорожные машины», 1999, № 8, с. 39

6.         Патент РФ 2055318 Способ контроля состояния смазочных материалов и рабочих жидкостей гидросистем

7.         Патент РФ № 2251705 Устройство для измерения и контроля диэлектрической проницаемости диэлектрических сред

8.         Рылякин, Е. Г. Снижение энергозатрат на трение в ресурсоопределяющих сопряжениях гидропривода мобильных машин / Е. Г. Рылякин, И. Н. Семов // Труды Кубанского государственного аграрного университета. — 2014. — 4(49). — 159–162.

9.         Исследование изнашивания прецизионных деталей дизельной топливной аппаратуры / А. В. Новичков, Новиков Е. В., Рылякин Е. Г., Лахно А. В., Аношкин П. И. // Международный научный журнал. — 2014. — № 3. — С. 108–111.

10.     Лашхи В. Л., Шор Г. И. Использование принципов термодинамики для оценки старения моторных масел / Химия и технология топлив и масел, 1987. — № 4. — с. 22–24

11.     Рылякин, Е. Г. Подогрев масла в гидросистеме / Е. Г. Рылякин // Сельский механизатор. — 2014. — № 8. - С.38–40.

12.     Зубарев, П. А. Производственный процесс получения защитных полиуретановых покрытий / П. А. Зубарев, А. В. Лахно, Е. Г. Рылякин // Молодой ученый. — 2014. — № 5. — С. 57–59.

13.     Бенуа Г. Ф., Хлюпин Л. А., Манохин Г. К. — Двигателестроение, 1988, № 2, с. 34–36

14.     Григорьев М. А., Бунаков Б. М., Долецкий В. А. Качество моторного масла и надежность двигателей. М., Изд-во стандартов, 1981. — 231 с.

15.     Резников В. Д., Шипулина Э. Н. Химмотологические аспекты анализа работавших дизеотных масел. М., ЦНИИТЭнефтехим, 1982. — 58 с.

16.     Беленький А. Д. Двигателестроение, 1986, № 9, с. 49–52

17.     Котельникова О.3., Лашхи В. Л., Кожекин А. В. Оценка состояния моторных масел при эксплуатации двигателей внутреннего сгорания// Химия и технология топлив и масел. 1989. — № 11. — С. 43–46.

18.     Шепельский Ю. Л., Певзнер Л. А. — Двигателестроение, 1984, № 7, с. 35–37

19.     Долгова Л. А., Салмин В. В. Ранжирование основных параметров работоспособности моторного масла // Современные научные исследования и инновации. 2015. № 2 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2015/02/48863

20.     Долгова Л. А., Салмин В. В. Методика определения показателей качества моторного масла на основе теории подобия Перспективные направления развития автотранспортного комплекса: сборник статей VIII Международной научно-практической конференции / МНИЦ ПГСХА. — Пенза: РИО ПГСХА, 2014 г., — С. 33.

Обсуждение

Социальные комментарии Cackle